

A Scaling Analysis of Influenza Transmission in Nepal

Gokul Saha*

Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata-700020, West Bengal, India

ABSTRACT

This research provides a detailed scaling analysis of Influenza transmission in Nepal by applying time series methods and the Hurst exponent. Examining monthly incidence across the most impacted districts from July 2022 to June 2024, the study evaluates the fractal characteristics—specifically self-similarity and self-affinity—of the data. By distinguishing between long-term and short-term memory patterns, the analysis determines whether the disease spread is persistent or anti-persistent. These insights offer a robust framework for public health officials to refine forecasting models and optimize intervention strategies.

Keywords: scaling analysis, Influenza transmission, Nepal

INTRODUCTION

Over the last few decades, Influenza has emerged as a significant public health threat in Nepal, marked by a consistent rise in infection rates. To develop successful mitigation strategies, it is vital to understand the underlying mechanics of how these outbreaks evolve. One sophisticated way to study these trends is through **scaling methods**, which utilize mathematical concepts like scaling exponents and self-similarity to map the behavior of the virus. **Self-similarity** occurs when a structure is composed of smaller parts that statistically mirror the whole. In simpler terms, the pattern looks the same regardless of how much you "zoom in" or "zoom out." In the context of Nepal's Influenza data, self-similarity suggests that the fluctuations we see on a small scale (daily or weekly case counts) reflect the broader patterns seen on a large scale (seasonal or yearly cycles). By identifying these recurring structures, health officials can:

- **Improve Forecasting:** Predict future outbreaks by recognizing small-scale signals.
- **Optimize Resources:** Allocate medical supplies more efficiently based on recognized patterns.
- **Refine Interventions:** Create strategies that address both sudden spikes and long-term trends.

In epidemiology, **memory** refers to how much previous data points influence future trends. This is often categorized into two types:

1. Long Memory (Long-Range Dependence)

This occurs when current infection rates are significantly shaped by events from months or even years ago. If Influenza has a "long memory," it suggests that the disease is driven by persistent factors such as:

- Deep-rooted social behaviours.
- Long-standing environmental conditions.
- The lasting impact of historical public health policies.

2. Short Memory (Short-Range Dependence)

In this scenario, current cases are only influenced by the very recent past. The correlation between data points fades quickly. If an outbreak has "short memory," it implies the disease is highly sensitive to immediate changes, such as a sudden weather shift or a recent localized event, rather than long-term trends. Nygård and Glatte (2003) utilized fractal analysis to reveal hidden patterns in epidemiological time series, an approach useful for detecting trends in Influenza case data. Eco-epidemiological analyses by Chakravarti and Kumaria (2005) and Raheel et al. (2011) provided insights into the factors influencing

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Influenza spread in India, essential for understanding the context of scaling analysis. Dias (2013) discussed self-affinity and self-similarity in ecological contexts, aiding in the modeling of self-similar Influenza case distributions. Saha et al. (2019) examined the relationship between irregularity and scaling indices in self-similar and self-affine signals, offering insights into the irregularities and scaling properties of Influenza trends. Ghosh (2020) applied scaling analysis to COVID-19 cases, demonstrating the effectiveness of these techniques in epidemiological studies. Time series forecasting using machine learning has also been explored by Bodapati et al. (2020) and Lestari et al. (2022), who employed Long Short-Term Memory (LSTM) networks to predict COVID-19 and Influenza cases, respectively. LSTM networks' ability to capture temporal dependencies makes them suitable for predicting future Influenza cases. Abdulwasaa et al. (2021) and El-Dessoky and Khan (2022) applied fractal-fractional models to epidemic forecasting, showing their potential for predicting Influenza outbreaks. Li et al. (2022) enhanced Influenza forecasts by integrating geospatial big data and historical information, highlighting the importance of comprehensive data for accurate predictions. Raubitsiek et al. (2023) investigated scaling exponents in time series data through machine learning, providing methodologies relevant to analyzing Influenza trends. These studies collectively offer a robust foundation for using scaling approaches to analyze Influenza trends, demonstrating the applicability of various methods to understand and predict the spread of Influenza, crucial for developing effective public health strategies in Nepal. This research examines the daily fluctuations of Influenza cases in Nepal through a scaling framework, specifically focusing on **self-similarity** and **self-affinity**. By utilizing scaling analysis and calculating the **Hurst exponent (H)**, the study identifies latent patterns within the time series that conventional statistical methods often overlook. The Hurst exponent serves as a critical metric to quantify the "memory" and "roughness" of the data, revealing the extent to which past trends influence future outbreaks. Our findings confirm that daily incidence rates follow self-affine patterns, providing a more nuanced understanding of Influenza epidemiology. These insights are then discussed in the context of public health, offering a scientific basis for more

robust monitoring and targeted intervention strategies in Nepal.

2. Theory:

2.1 Hurst Exponent

The Hurst exponent (H) measures the memory of a self-similar time series reflecting its tendency either to regress strongly to the mean or to cluster in a certain direction. For a self-similar time series, it ranges between 0 and 1. The following are its implications at different ranges.

H = 0: Represents white noise, where data points are completely uncorrelated.

0 < H < 0.5: Indicates anti-persistent behaviour (negative autocorrelation), where the time series exhibits short memory.

H = 0.5: Indicates a true random walk (Brownian motion), with no memory.

0.5 < H < 1.0: Indicates persistent behaviour (positive autocorrelation), suggesting long-term memory.

H = 1: Represents a perfectly smooth time series.

2.2 Scaling Analysis and Estimation of Hurst Exponent

Scaling analysis investigates how statistical features of data change with the scale of observation. It is employed to comprehend the fundamental patterns and behaviours that hold true throughout various temporal or spatial ranges. For a given finite time series $x(t_n)$ (where $n=1,2, N$ and t represents time), The finite Variance Scaling Method (FVSM), specifically Standard Deviation Analysis (SDA), is used to estimate H. The sequence of cumulative standard deviations $D(t_j)$ associated with the partial time series $\{x(t_n)\}$ (for $n=1,2, j$) is calculated as:

$$D(tj) = \left[\frac{1}{j} \sum_{n=1}^j x^2(t_n) - \left(\frac{1}{j} \sum_{n=1}^j x(t_n) \right)^2 \right]^{\frac{1}{2}}$$

For self-similar time series, $D(t)$ follows a power law:

$$D(t) \propto t^H$$

Here, H can be estimated from the slope of the best-fitted straight line in the log-log plot of $D(t)$ versus t .

RESULTS

In this study, we analyze the monthly number of new affected cases of Influenza in the most affected Districts of Nepal: Bhaktapur, Palpa, Bhojpur, Dhading, Makwanpur, Chitawan, Rupandehi, Katmandu. The data for this analysis has been sourced from the Ministry of Health and Population Department of Health Services Epidemiology and Disease Control Division ([14]). Figures 1-8 illustrate the monthly profiles for states namely Bhaktapur, Palpa, Bhojpur, Dhading, Makwanpur, Chitawan, Rupandehi, Katmandu in Nepal from July, 2022 to June, 2024.

Figure 1: Total number of Affected Cases in Bhaktapur

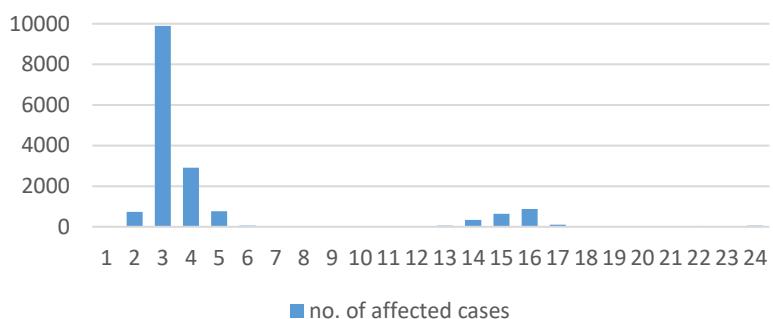


Figure 2: Total number of Affected Cases in palpa

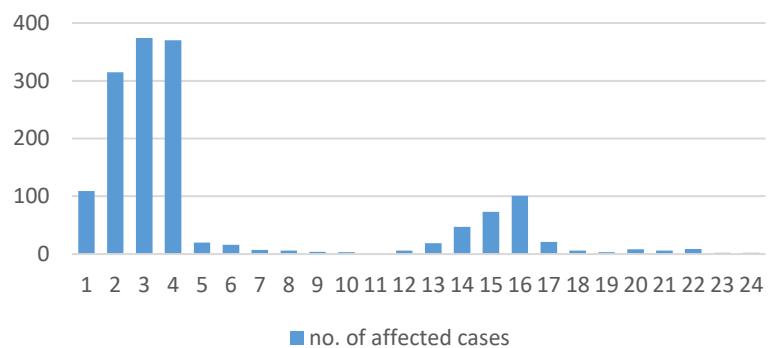


Figure 3: Total number of Affected Cases in Bhojpur

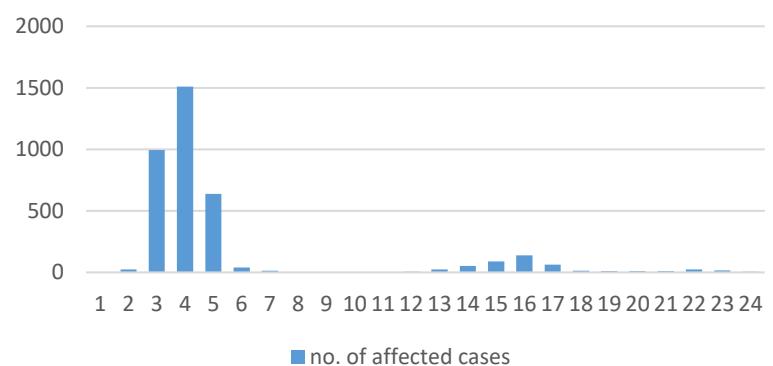


Figure 4: Total number of Affected Cases in Dhading

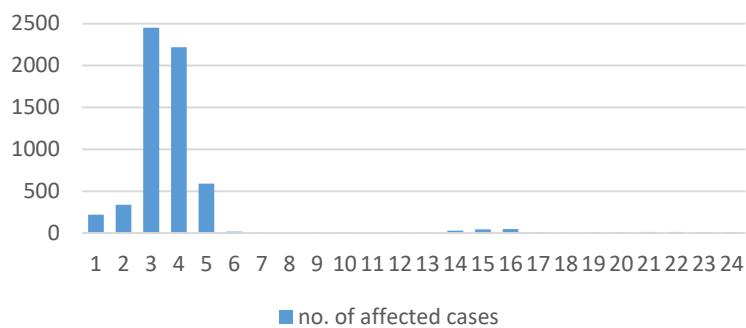


Figure 5: Total number of Affected Cases in Makwanpur

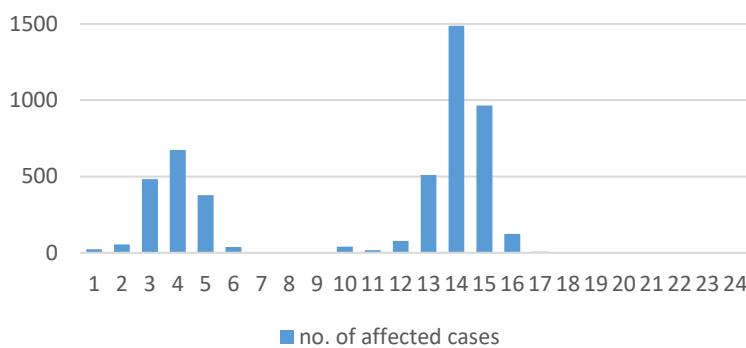


Figure 6: Total number of Affected Cases in Chitawan

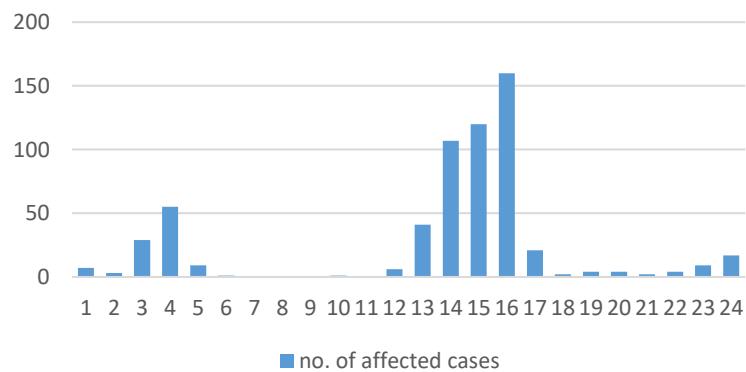


Figure 7: Total number of Affected Cases in Rupandehi

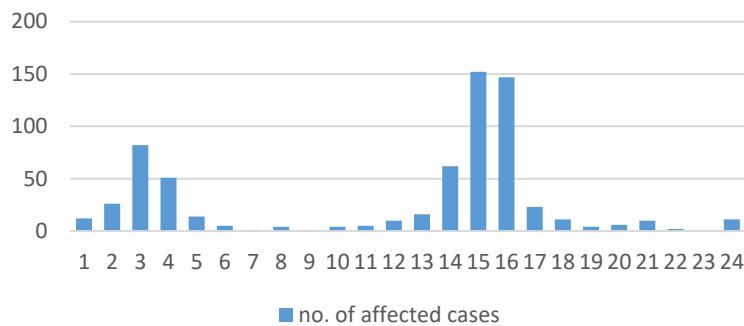
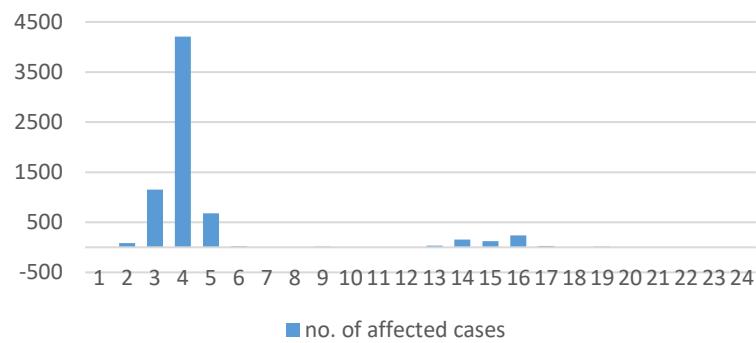


Figure 8: Total number of Affected Cases in Katmandu



The Finite Variance Scaling Method (FVSM) has been utilized on these ten distinct time series. The resulting log-log graphs, which depict the cumulative

standard deviation plotted against time (in months), are shown in Figures 9 - 16.

Figure 9: Scaling Analysis of New Cases of Influenza in Bhaktapur

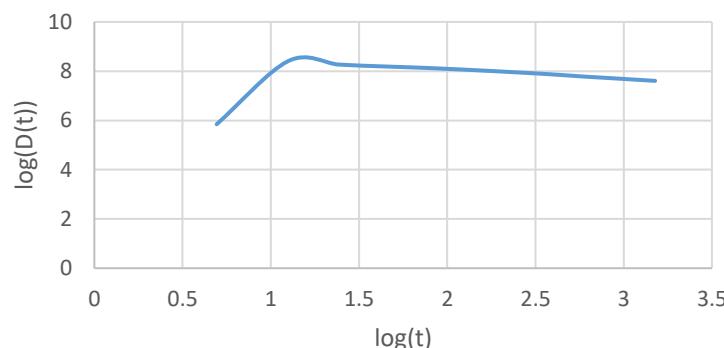


Figure 10: Scaling Analysis of New Cases of Influenza in Palpa

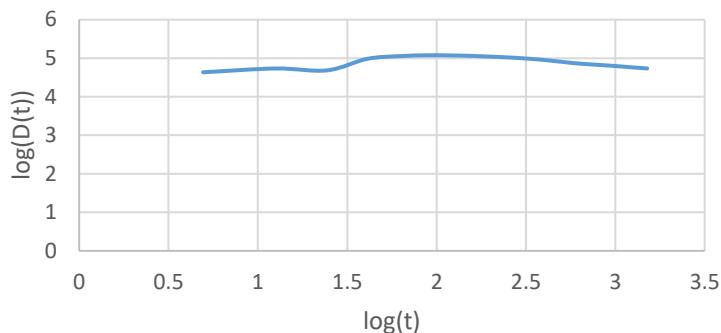


Figure 11: Scaling Analysis of New Cases of Influenza in Bhojpur

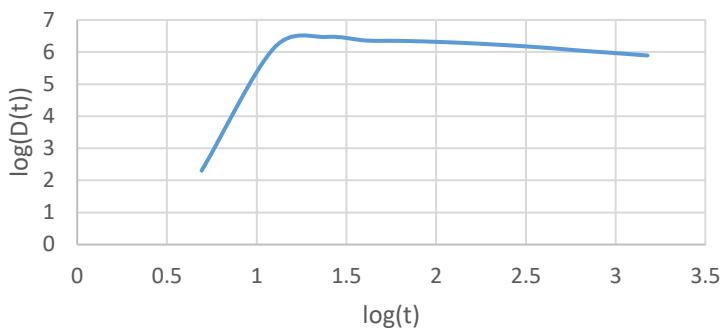


Figure 12: Scaling Analysis of New Cases of Influenza in Dhading

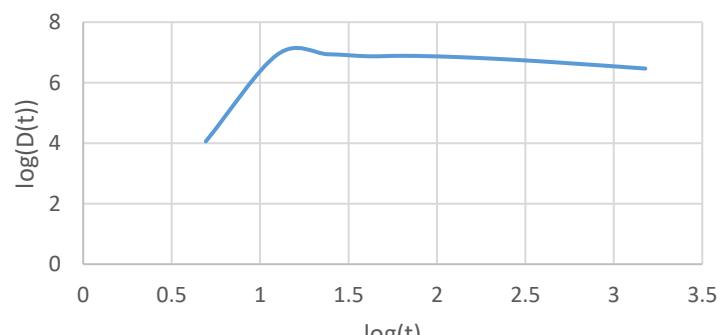


Figure 13: Scaling Analysis of New Cases of Influenza in Makwanpur

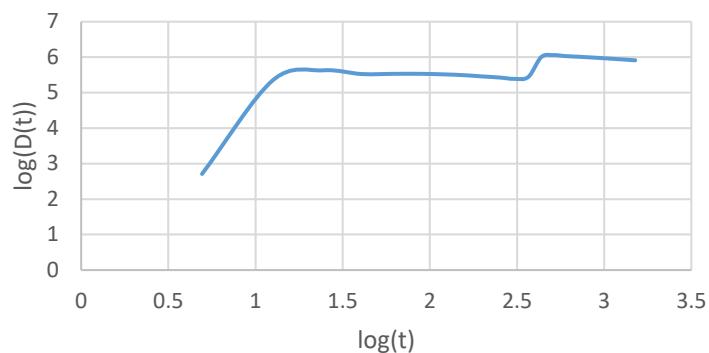


Figure 14: Scaling Analysis of New Cases of Influenza in Chitawan

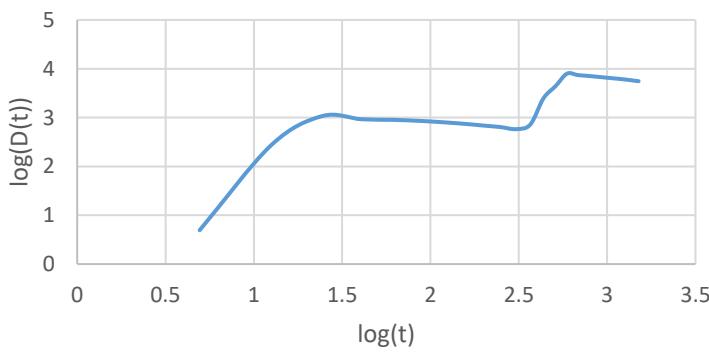
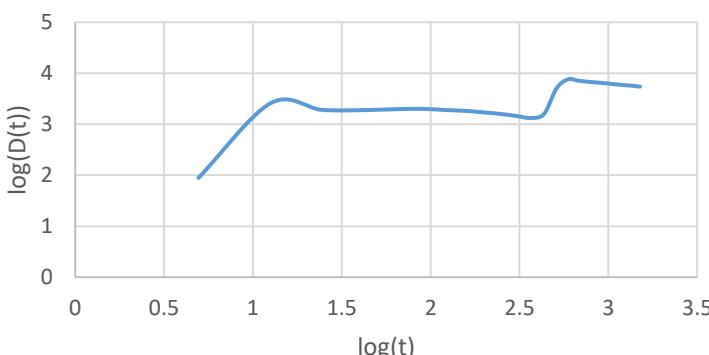


Figure 15: Scaling Analysis of New Cases of Influenza in Rupandehi



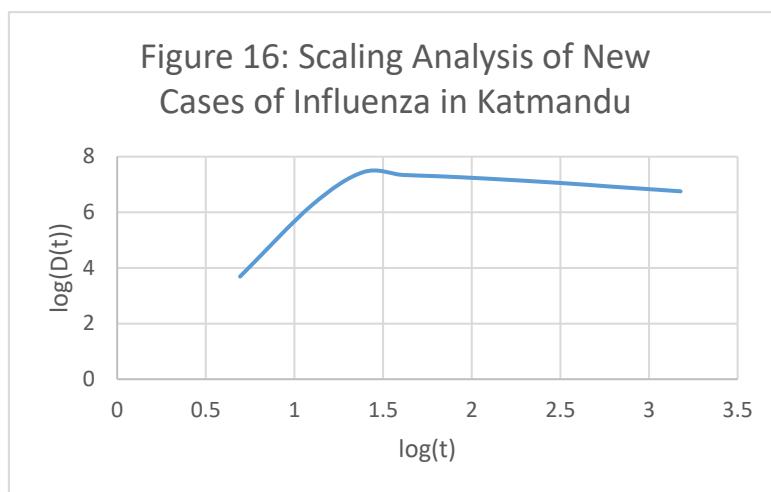


Table 1: Estimation of Hurst exponent of affected cases due to Influenza in mostly affected Districts of Nepal:

States	Hurst Exponent (H) (for Affected cases)	Memory Status (for Affected cases)
Bhatkapur	0.0613	Short or anti-persistent memory
Palpa	0.0013	Short or anti-persistent memory
Bojpur	0.4150	Short or anti-persistent memory
Dhading	0.2502	Short or anti-persistent memory
Makwanpur	0.7236	Long or persistent memory
Chitawan	0.9021	Long or persistent memory
Rupandehi	0.4739	Short or anti-persistent memory with a hint of randomness
Katmandu	0.4307	Short or anti-persistent memory

DISCUSSION

In the present work, the scaling analysis of the monthly new cases of Influenza has been performed in some severely affected districts namely Bhaktapur, Palpa, Bhojpur, Dhading, Makwanpur, Chitawan, Rupandehi, Katmandu in Nepal. The data were log-transformed to calculate the Hurst exponent, followed by calculating the cumulative standard deviations. By plotting the log of the rescaled range against the log of the time and fitting a linear trend, the slope of this line provides the Hurst exponent. Makwanpur and Chitawan with high standard deviations and significant fluctuations, likely exhibit high H values indicative of persistent behavior. Bhojpur, with moderate trends, is expected to show intermediate H values, while Dhading with more stable trends, likely has a lower H value, suggesting less persistence, while Bhaktapur and Palpa, with stable trends, indicates a low H value. Rupandehi and Katmandu shows moderate persistence H values. Understanding these memory dynamics is crucial for designing predictive

models, resource planning, and targeted public health strategies. Regions with persistent memory patterns may require continuous intervention efforts. Future research may examine environmental factors—like rainfall, temperature, and humidity—and their correlation with Influenza spread.

REFERENCE

1. Raubitzek, S., Corpaci, L., Hofer, R. and Mallinger, K., 2023. Scaling Exponents of Time Series Data: A Machine Learning Approach. *Entropy*, 25(12), p.1671.
2. Dias, L.S., 2013. Self-affinity, self-similarity and disturbance of soil seed banks by tillage. *Plants*, 2(3), pp.455-472.
3. Ghosh, K., 2020. Scaling Analysis of Daily New Cases of COVID-19 in Some Major Affected Countries. Available at SSRN 3574066.
4. Saha, Gokul Rakshit, Kausik., Ghosh, Koushik. and Chaudhuri, K.S., 2019. A revisit to the relation between irregularity index and scaling

index in a stationary self-similar signal obeying fractional Gaussian Noise. *Journal of the Calcutta Mathematical Society*, 15(2), p.139.

5. Saha, Gokul Rakshit, Kausik., Ghosh, Koushik. and Chaudhuri, K.S., 2019. A new proposal on the relation between irregularity index and scaling index in a non-stationary self-affine signal obeying fractional Brownian Motion. *Bulletin of the Calcutta Mathematical Society*, 111(1), p.79.
6. Nygård, J.F. and Glattre, E., 2003. Fractal analysis of time series in epidemiology: Is there information hidden in the noise? *Norsk Epidemiologi*, 13(2).
7. El-Dessoky, M.M. and Khan, M.A., 2022. Modeling and analysis of an epidemic model with fractal-fractional Atangana-Baleanu derivative. *Alexandria Engineering Journal*, 61(1), pp.729-746.
8. Abdulwasaa, M.A., Abdo, M.S., Shah, K., Nofal, T.A., Panchal, S.K., Kawale, S.V. and Abdel-Aty, A.H., 2021. Fractal-fractional mathematical modeling and forecasting of new cases and deaths of COVID-19 epidemic outbreaks in India. *Results in Physics*, 20, p.103702.
9. Chakravarti, A. and Kumaria, R., 2005. Eco-epidemiological analysis of Influenza infection during an outbreak of Influenza fever, India. *Virology journal*, 2, pp.1-7.
10. Raheel, U., Faheem, M., Riaz, M.N., Kanwal, N., Javed, F. and Qadri, I., 2011. Influenza fever in the Indian subcontinent: an overview. *The Journal of Infection in Developing Countries*, 5(04), pp.239-247.
11. Bodapati, S., Bandarupally, H. and Trupthi, M., 2020, October. COVID-19 time series forecasting of daily cases, deaths caused and recovered cases using long short term memory networks. In 2020 IEEE 5th international conference on computing communication and automation (ICCCA) (pp. 525-530). IEEE.
12. Lestari, N.A., Tyasnurita, R., Vinarti, R.A. and Anggraeni, W., 2022. Long Short-Term Memory forecasting model for Influenza fever cases in Malang regency, Indonesia. *Procedia Computer Science*, 197, pp.180-188.
13. Li, Z., Gurgel, H., Xu, L., Yang, L. and Dong, J., 2022. Improving Influenza forecasts by using geospatial big data analysis in google earth engine and the historical Influenza information-aided long short-term memory modeling. *Biology*, 11(2), p.169.

14. 2024_07_03_Influenza Situation Update .xlsx (edcd.gov.np).

HOW TO CITE: Gokul Saha*, A Scaling Analysis of Influenza Transmission in Nepal, *Int. J. Sci. R. Tech.*, 2025, 2 (12), 19-27. <https://doi.org/10.5281/zenodo.18125581>

