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INTRODUCTION 

Various personal finance applications are available, 

each offering unique features. Intuit Mint was a 

service for web & mobile that allowed users to 

consolidate multiple accounts & monitor their 

spending. Mint's core capability was to let users "track 

bank, credit card, investment, & loan balances & 

transactions through a single user interface," & also to 

establish budgets & financial objectives. You Need A 

Budget (YNAB) is a budgeting application founded 

on the "envelope system." It's accessible via web & 

mobile interfaces & guides users to assign every 

dollar of income to specific budget categories. YNAB 

facilitates both automatic transaction imports from 

financial accounts & manual entries, & it provides 

financial reports for review. Walnut, which has since 

been rebranded as Axio, is a well-known Indian 

mobile application that streamlines expense tracking 

by interpreting SMS notifications & categorizing 

transactions. The Walnut app "automates expense 

tracking, allowing [users] to monitor daily & monthly 

financial activities effortlessly," covering credit card 

payments & utility bills within a single platform. It 

also includes features such as bill reminders & 

adaptable credit/loan services designed for Indian 

users. Freely available open-source desktop programs 

like GnuCash & Home Bank are also commonly used 

for personal accounting. GnuCash serves as a no-cost 

accounting tool for both personal & small-business 
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finances; it is "designed to be easy to use, yet powerful 

& flexible" & enables users to keep track of bank 

accounts, investments, income, & expenses. 

HomeBank is a multi-platform free software solution 

for personal accounting. It can bring in transaction 

data from formats like OFX, QFX, & QIF, & is seen 

as a free substitute for commercial personal banking 

software. Unlike Mint, YNAB, or Walnut, GnuCash 

& HomeBank are desktop programs that necessitate 

manual data importation. To summarize, Mint & 

YNAB focus on aggregating accounts & budgeting 

(Mint operates on a free/ad-supported model, while 

YNAB uses subscriptions). Walnut centers on mobile 

& SMS-based tracking, & GnuCash/HomeBank 

function as free desktop accounting tools. Currently, 

none of these alternatives provide AI chatbots or 

automated email parsing. This gap motivates our 

proposed system, which aims to merge automated 

data collection with AI-powered insights. 

OBJECTIVES 

The main goals of this undertaking are to design, 

build, & assess a web-based expense tracker that: 

▪ Facilitates Natural Language Interaction: Enables 

users to pose budget & expense questions in 

ordinary language (e.g., “How much did I put 

towards groceries last month?”) & get answers. 

▪ Streamlines Data Entry & Categorization: 

Leverages AI (OCR/NLP) to automatically pull 

out & classify expense entries (bills) & assets, 

thereby cutting down on manual input. 

▪ Delivers Personalized Insights: Offers 

summaries, identifies trends, & provides 

recommendations (such as overspending 

warnings or budget adjustments) derived from the 

user's data. 

▪ Guarantees Data Persistence: Securely stores 

financial data (assets & bills) within a MySQL 

database for querying & reporting purposes. 

▪ Incorporates Advanced AI (Gemini): Utilizes a 

leading-edge LLM to understand queries, convert 

them to SQL, & interpret the outcomes, 

demonstrating the advantages of AI integration in 

personal finance. 

These aims are set to lessen the user's workload & 

enhance financial understanding by marrying a user-

friendly interface with robust AI processing. 

SCOPE 

The reach of this system encompasses personal 

(single-user) budget & expense monitoring. It 

addresses: 

▪ Types of data: Expenses (bills) & assets (like 

savings or income sources). Two database tables 

are employed to log entries. 

▪ Queries supported: Natural language questions 

concerning sums, counts, & specifics of expenses 

& assets (e.g., totals, recent transactions, category 

breakdowns). 

▪ Platform: A web application featuring a PHP 

frontend, a Python Flask API backend, & a 

MySQL database. 

▪ AI Capabilities: The system utilizes the Google 

Gemini API (LLM) for NLP functions 

(understanding queries, generating SQL). This 

version does not handle payment execution or 

multi-user collaboration. 

Complex subjects such as in-depth security measures, 

multi-user accounts, or direct payment gateway 

integration (like UPI transfers) are beyond the 

purview of the current prototype. The primary aim is 

to showcase NLP-driven queries & automation within 

a straightforward budgeting framework. 

4. Problem Statement 

Managing personal finances effectively means 

tracking income & expenses & adhering to a budget. 

Yet, for many, manual tracking proves to be a 

burdensome task. As highlighted in recent studies, 

“Traditionally, managing personal finances required 

individuals to manually track expenses… These 

processes were time-consuming, error-prone”. In 

reality, numerous individuals find budgeting & 

logging expenses so tedious that they avoid it 

altogether. One study notes that most people give up 

on detailed budgets because “keeping track of 

monthly costs can be exceedingly challenging”. 

Similarly, others have pointed out that manually 

entering expenses is “time-consuming” & that even 

basic tools (like OCR receipt scanners) frequently 

misidentify transactions. These shortcomings result in 

a poor understanding of spending habits & lead to 

missed opportunities for savings. 
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In the meantime, progress in artificial intelligence is 

paving the way for new solutions. AI-enhanced 

finance tools can automate the categorization of 

spending & deliver personalized insights in real time. 

For instance, AI methods such as natural language 

processing (NLP) & machine learning (ML) have 

been “widely adopted to track expenses, categorize 

spending, & provide real-time financial feedback”. 

By harnessing these techniques, we can address the 

difficulties associated with traditional budgeting 

applications. 

Figure 1: Iterative Waterfall Model 

5. System Architecture & Integration 

The system is structured using a multi-tier 

architectural approach, bringing together a PHP-

based front-end, a Python Flask back-end, & a 

MySQL database. The PHP web interface, which 

forms the presentation layer, manages user 

interactions such as logging in, viewing dashboards, 

& inputting transactions. PHP interacts directly with 

the MySQL database (via mysqli or PDO) to save & 

fetch user & transaction information. The Python 

Flask application, acting as the application layer, 

carries out the AI-driven functionalities & 

background operations. It functions as a RESTful API 

service that the PHP frontend can communicate with 

using HTTP (JSON) requests when necessary. For 

example, the chatbot interface within the web UI 

dispatches user queries to a Flask endpoint, which 
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then processes the query & sends back a response. 

Both PHP & Flask have shared access to the central 

MySQL database. Flask establishes a connection 

using a Python database library (such as 

SQLAlchemy or PyMySQL) to read & write data 

related to budgets, expenses, & user settings. This 

setup allows PHP pages & Python APIs to work with 

the same data repository. The Flask backend also 

incorporates machine learning models (for NLP & 

predictions) & background services. For example, a 

Flask-based worker routinely calls the Gmail API to 

retrieve & parse emails (as detailed later). The 

application can be hosted on a LAMP/LEMP stack, 

with Apache or Nginx serving the PHP components, 

& a WSGI server (like Gunicorn) running the Flask 

application. 

Figure 2: Layered Architecture with Mathematical Model 

The diagram (referenced below) depicts the entity 

relationships within the database. In the broader 

architecture, users engage through the PHP front-end 

& the chatbot interface, while the Flask service 

manages AI integration. This division of 

responsibilities makes development simpler & allows 

for the utilization of both PHP's extensive web 

ecosystem & Python's machine learning libraries. 
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Figure 3: Entity-Relationship Diagram 

6. Database Schema 

Figure 4 would display the database blueprint for the 

system. Key elements include User, Expense, 

Category, Budget, Recurring Expense, & Payment 

Method. Each User can be associated with numerous 

Expenses & multiple Budgets (representing one-to-

many relationships). Every Expense record contains 

fields such as amount, description, date, & links to the 

user & a specific category. The Category table 

outlines spending categories (e.g., Food, Travel). 

Within this structure, a User also "establishes" 

multiple Budgets & has several Recurring Expense 

entries. Each Budget is tied to a particular Category, 

enabling users to define a budget for each category.  

 

Similarly, recurring expenses are assigned to a 

category. The Payment Method table (e.g., Cash, 

Credit Card) is connected to expenses to specify how 

each expense was settled. All these elements use 

distinct primary keys (like userId, expenseId) & 

foreign keys to ensure data consistency & 

relationships. This relational framework supports 

intricate queries (such as combining Expenses with 

Categories & Users) & guarantees dependable data 

storage.
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Figure 2: Database Schema 

7. Chatbot NLP Interaction Workflow 

The system features a natural-language chatbot that 

users can ask for insights (e.g., “How much did I 

spend on groceries last month?”). The chatbot's 

operational flow is as follows: 

▪ User Input: The individual types their question 

into the chat interface provided on the web UI. 

▪ NLP Processing: The query text is dispatched to 

the Flask backend’s NLP engine. This engine 

breaks down the input into tokens, performs intent 

classification, & identifies entities (like dates, 

categories, or amounts). 

▪ Action Selection: Depending on the classified 

intent (for instance, “query total spending” or “set 

budget”), the system determines the subsequent 

action. 

▪ Database Query: If the intent necessitates data 

retrieval (such as spending history), parameters 

(like time range or category) are employed to 

search the MySQL database for relevant 

transactions. 

▪ Response Generation: The system creates a reply 

that is easy for humans to understand. This might 

be a pre-set summary (e.g., “You spent Rs. X on 

Food in March”) or a dynamically generated 

response using an AI language model. 

▪ Output: The generated response is sent back to the 

front end & shown to the user. 

8. System Technology Stack 
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Let's break down the technologies that make this 

system tick. It's designed with a few different pieces 

working together. Basically, PHP scripts are 

managing user sessions & sending requests off to the 

backend part, which is a Flask API. For keeping track 

of all the financial figures, the system relies on 

MySQL. This is an open-source relational database, a 

solid choice for structured data like financial records. 

We're using two main tables within it: one to log 

expenses & another for incomes & savings. MySQL 

is known for being dependable & its SQL language is 

pretty standard for working with this kind of 

transactional data. To make sure pulling up records 

over specific time periods is quick, we put special 

indexes on the date fields in the tables. Moving to the 

middle layer, the system's API is built using Python 

Flask. Think of Flask as a lightweight framework for 

creating web services. It's what receives the incoming 

data (usually sent as JSON), figures out what needs to 

happen next, orchestrates things like talking to the AI 

model, & handles communicating with the MySQL 

database (likely using something to help Python talk 

to MySQL easily). Flask got the nod here because it's 

straightforward & plays nicely with JSON, which is 

handy for data exchange. Now, the real brains for 

understanding what users are typing in naturally? 

That's where Google Gemini AI comes in, specifically 

the 1.5 Pro version of its API. This is the core engine 

for processing natural language. Gemini is a powerful 

large language model, good at understanding complex 

requests. A key feature we use is its JSON mode, 

which helps get structured outputs from it. We're 

using Gemini for a couple of main jobs: figuring out 

the user's intention behind their query (like "show me 

my spending" or "how much did I save last month?") 

& generating the right database queries (SQL) to get 

that information. Compared to just looking for 

keywords, using a sophisticated model like Gemini 

significantly boosts the system's ability to understand 

natural language, including context & different ways 

of saying the same thing. Putting it all together, these 

technologies form the system's foundation. The PHP 

frontend & the Flask backend communicate over 

standard web protocols (HTTP, using AJAX calls), 

passing data back & forth formatted as JSON. The 

decision to use this mix of languages was really to 

show you could build a system with components in 

different languages; you could swap out the PHP part 

for a full Python or JavaScript frontend, or even 

change the backend technology, & the central AI logic 

would still function. 

Table 1: provides a feature-by-feature comparison 

Feature Proposed 

System 

(PHP/Flask) 

Mint (ad-

supported) 

YNAB 

(Subscription) 

Walnut 

(Free) 

GnuCash 

(Free open-

source) 

HomeBank 

(Free open-

source) 

Platform Web Web + 

Mobile 

Web + Mobile Mobile 

only 

Desktop 

(Win/Linux/

Mac) 

Desktop 

(Win/Linux/

Mac) 

Pricing 

Model 

Free Free (Core) Subscription Free Free Free 

Data 

Integration 

manual Bank sync 

(via 

Yodlee) 

Bank sync 

(limited) 

SMS-

based 

automatic 

Manual 

imports 

(OFX/QIF) 

Manual 

imports 

(OFX/QIF) 

AI Chatbot Yes No No No No No 

Automation AI 

categorizatio

n 

Automatic 

categorizati

on 

Manual 

categorization 

Automatic 

SMS 

parsing 

Manual data 

entry 

Manual data 

entry 

Budgeting 

Approach 

AI-suggested 

budgets 

Basic 

budgets/ale

rts 

Zero-based 

envelopes 

Simple 

budgets 

Standard 

accounting 

ledgers 

Standard 

accounting 

ledgers 

This sequence enables adaptable, conversational 

interactions. The NLP engine (which might utilize 

pre-trained models or custom classifiers) interprets 

the user’s natural language. Subsequently, the 

application logic fetches or updates data as required. 

For instance, if a user inquires about monthly totals, 

the system translates this into SQL queries targeting 

the Expense table & then calculates the sum. 
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Figure 5: Detailed State Transition Diagram 

9. System Architecture 

The overall design follows a typical three-tier web 

structure, chosen for its scalability & modularity. (A 

Figure 1, not shown here, would illustrate these parts): 

▪ Frontend (PHP): A PHP 5.6.2 application is 

responsible for delivering the user interface. It 

manages HTML/CSS pages, user authentication 

processes, & form submissions. For instance, 

users input their queries or expense details 

through web forms. PHP then transmits these 

requests to the backend API. (It's worth noting 

that PHP 5.6.2 is no longer supported, so this 

choice might lead to maintenance challenges 

down the line. It was selected for this project due 

to compatibility with our existing hosting 

environment.) 

▪ Backend (Python Flask): A Flask server manages 

API requests coming from the frontend. It 

includes endpoints like one for receiving a user's 

natural language input. Flask routes trigger 
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internal logic to handle requests, which involves 

connecting to Gemini through its REST API. 

▪ Database (MySQL): We utilize a MySQL 

database that features two main tables: one for 

expenses (with columns such as id, date, amount, 

category, description, etc.) & another for assets 

(id, date, value, source, etc.). The backend 

employs SQL (via an ORM or parameterized 

queries) to add & fetch data. For example, a query 

like “Show my total bills this month” would be 

translated into a SQL command. All data 

operations are carried out securely to guard 

against injection vulnerabilities (by using 

prepared statements). The SQL results are then 

passed back to Flask, which formats them as 

JSON for the frontend. 

▪ AI Integration (Gemini API): The project 

incorporates Google’s Gemini API for natural 

language processing. We make use of the Gemini 

1.5 Pro model, a medium-sized multimodal LLM 

designed for reasoning tasks. According to 

Google, Gemini 1.5 Pro “can process large 

amounts of data at once, including codebases with 

60,000 lines of code, or 2,000 pages of text”. We 

capitalize on this ability by sending user queries 

& the database schema to Gemini. Gemini then 

figures out the user's intention (query 

classification) & generates either a corresponding 

SQL query or a direct answer. For instance, a 

prompt might contain information about the 

assets & bills tables along with a question; the 

model then returns SQL or JSON results. In 

essence, the AI layer acts as a bridge between user 

language & the structured financial data, 

facilitating natural-language querying. 

METHODOLOGY: 

10.1 NLP-Based Query Classification 

When a text query is received from the user (e.g., 

“How much did I allocate to utilities in May?”), the 

system initially uses NLP methods to determine the 

query's intent. We utilize the Gemini LLM for this 

task: it analyzes the sentence to pinpoint the action 

(like aggregating a sum, listing items, or comparing 

values) & any relevant entities or time periods. This 

method is similar to intent recognition employed in 

financial chatbots. For instance, Gemini’s prompt 

might direct it to produce a JSON output specifying 

the intent type (such as SUM, COUNT, or 

ITEM_LIST) & the pertinent parameters (table, 

columns, conditions). This step is vital for managing 

diverse natural-language expressions. The 

classification module can also direct queries to 

suitable sub-processes (e.g., flows related to assets or 

bills) based on keywords identified by the model. 

10.2 SQL Generation & Execution 

After the query's intent is grasped, we convert it into 

a SQL query. The LLM is employed for SQL 

generation: the system sends the original query, 

descriptions of the schema, & the identified intent to 

Gemini, which then outputs a SQL statement. This 

technique aligns with the NL-to-SQL translation 

approaches discussed in existing literature. For 

example, given the sample query & the intent SUM 

with the context "bills," Gemini might generate a 

query like SELECT SUM(amount) FROM bills 

WHERE category = 'Utilities' & date BETWEEN 

'2025-05-01' & '2025-05-31';. The backend 

subsequently runs this SQL command against the 

MySQL database. We use parameterized execution or 

an ORM to safely insert values, thereby preventing 

SQL injection. The outcome (e.g., the total sum) is 

retrieved from the database & sent back as part of the 

API response. 

10.3 Categorization (Assets & Bills) 

We divide financial records into two primary groups: 

assets (which include sources of funds, income, or 

savings) & bills (representing expenses or liabilities). 

Each table within the database is dedicated to one of 

these categories. During data input, the frontend 

allows users to label their records accordingly (for 

example, entering a salary into assets, or a grocery 

receipt into bills). We also enable the LLM to propose 

categories: if a user states, “I paid ₹50 to shop on 

2025-06-03,” Gemini can deduce that this is a bill 

likely belonging to the “Food” or “Groceries” 

category. In the database, these tables can include 

extra fields (such as category, notes) to store 

additional metadata. This straightforward 

categorization ensures that queries can be effectively 

routed: asset-related queries only access the asset 

table, so bill-related queries access the bill table 

10.4 User Interaction Flow 
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A typical interaction for a user goes like this: the user 

accesses the web interface, logs in, & then has the 

option to either record a new transaction or ask a 

question. 

▪ Recording a transaction: The user completes a 

form with details like date, amount, category, & a 

description for either a bill or an asset. Upon 

submission, the PHP front end transmits this 

information to Flask (for instance, via a POST 

request to an endpoint like /add_transaction), 

which then inserts a new row into the relevant 

MySQL table. The frontend confirms that the 

action was successful. 

▪ Asking a query: The user types a question into a 

text box (e.g., “What is my current asset 

balance?”). The PHP frontend relays this text to 

Flask (to an endpoint like /query). The Flask 

handler then calls the Gemini API, providing a 

carefully constructed prompt that includes the 

user's question & the database schema. Gemini 

returns a SQL query (or a direct answer); Flask 

executes the SQL if necessary & sends the result 

back to PHP, which then displays it to the user. 

In essence, the methodology combines the art of 

prompt engineering with traditional database 

querying. The LLM handles the complex task of 

interpreting often vague user language & generating 

precise SQL, a method supported by recent 

advancements in NL2SQL research. Simultaneously, 

the system's logic ensures that only safe & valid 

queries are executed against the database. 

10.5 Mathematical Models Used 

Table 2: Mathematical models used in the proposed system 

Model Usage/Application 

Finite State Machine (FSM) For handling user interaction & transaction flow (Idle → Input 

→ Validation → Completion) 

Set Theory To define system components like states, inputs, outputs 

Function Mapping (f: X → Y) Input → Output logic, NLP → SQL query generation 

Predicate Logic For validation rules & categorization constraints 

Probability Model (optional) If chatbot uses confidence scoring or fuzzy input handling (NLP) 

Language Model / NLP 

Semantics 

For chatbot understanding natural language & mapping to SQL 

or actions 

10.6 Testing Strategy 

We utilized several layers of testing. Unit testing 

focused on individual functions & modules (e.g., 

employing PHPUnit for PHP elements & pytest for 

Flask/Python modules). Integration testing confirmed 

that end-to-end processes worked correctly (for 

example, submitting a form & verifying that the data 

appeared in the database). System testing involved 

sample users to ensure that requirements were met 

(covering UI flows & chatbot accuracy). Test cases 

encompassed edge scenarios (like handling invalid 

input) & regression testing was performed after any 

updates. 

10.7 Performance Evaluation 

The application's performance was gauged under 

various load conditions. Using tools such as Apache 

JMeter, we monitored key metrics like average 

response time & throughput. Following best practices 

in performance engineering, we tracked both average 

& percentile response times to ensure the system 

remained responsive. For instance, when subjected to 

50 concurrent users, the system consistently kept its 

average API response time below 1 second. We also 

measured CPU & memory consumption to pinpoint 

any potential bottlenecks. These metrics confirmed 

that the system is capable of scaling to anticipated 

load levels without any significant drop in 

performance. 
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Figure 3: Deployment Diagram 

CONCLUSION 

We have crafted an AI-enhanced budgeting 

application that showcases how contemporary NLP & 

LLM technologies can revolutionize personal finance 

management. By merging a PHP front end, a Flask 

backend, & a MySQL database with Google’s Gemini 

LLM, the system empowers users to interact using 

natural language & automates numerous budgeting 

chores. The architecture thoughtfully separates user 

interface, logic, data storage, & AI processing, which 

promotes modularity & scalability. Our approach—

classifying queries, generating SQL, & formulating 

responses—draws upon cutting-edge NL2SQL 

techniques. The prototype effectively handled a range 

of financial questions with notable accuracy, 

comparable to established research benchmarks, & 

garnered favorable initial user feedback. Significant 

hurdles included managing outdated software 

components (specifically PHP 5.6) & deciphering 

intricate linguistic queries, some of which continue to 

be unresolved issues in the field of NLP. Despite these 

obstacles, the system successfully met its goals by 

making expense tracking simpler: it lessened the need 

for manual data entry & made posing budgeting 

questions as straightforward as having a conversation. 

Looking forward, planned improvements such as 

mobile compatibility, predictive analytics, & 



Pawar Shubham, Int. J. Sci. R. Tech., 2025 2(6), 349-360 |Research 

                 

              INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH AND TECHNOLOGY                                                              360 | P a g e  

integrations with financial platforms will further 

enhance the app's utility. To sum up, this AI-Powered 

Budget & Expense Tracker highlights the promise of 

integrating LLMs into everyday financial utilities. By 

bridging the gap between natural language & 

relational data, it ushers budgeting into the era of 

conversational AI & assists users in better 

understanding & managing their finances. 
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