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ABSTRACT

Artificial intelligence (Al) is transforming drug development by improving precision, decreasing timelines and costs,
and enabling Al-powered drug design. This paper examines current advances in deep generative models (DGMs) for
de novo drug creation, including various techniques and their tremendous influence. It critically examines the issues
that are inextricably linked to these technologies, providing methods to realize their full potential. It includes case

studies of both triumphs and failures in moving medicines to clinical trials using Al.

Finally, it presents a

forwardlooking strategy for optimizing, DGMs in de novo drug design, resulting in speedier and more cost-effective

drug development.
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enabling Al-powered drug design

INTRODUCTION
Drug Discovery

In recent years, there has been a lot of interest in
medicinal chemistry's application of artificial
intelligence (Al) as a potential way to transform the
pharmaceutical sector. [1] The process of finding and
creating new drugs, or drug discovery, is a difficult
and drawn-out undertaking that has historically relied
on time-consuming methods like high-throughput
screening and trial-and-error testing. However, by
making it possible to analyze vast volumes of data
more accurately and efficiently, artificial intelligence
(Al) techniques like machine learning (ML) and
natural language processing have the potential to

speed up and enhance this process [2]. The scientists
recently revealed the successful application of deep
learning (DL) to accurately predict the potency of
medicinal molecules. [3] . The toxicity of potential
medications has also been predicted by Albased
techniques [4]. These and other studies have
demonstrated Al's potential to increase the efficacy
and efficiency of drug discovery procedures. But
there are drawbacks and restrictions to using Al to
create novel bioactive chemicals. To completely
comprehend the benefits and limitations of Al in this
field, more research is required, and ethical
considerations must be taken into account.
Notwithstanding these obstacles, it is anticipated that
Al will play a major role in the creation of novel drugs
and treatments during the coming years. [6].
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Drug Discovery in the Al Era

Al has been used extensively in the search for new
drugs. Machine learning methods, such random forest
(RF), have been used for VS and QSAR since the
early 2000s. [7] The deep learning era began in 2012
with AlexNet41. Deep neural networks (DNN) beat
the conventional RF model in predicting chemical
activity shortly after in the 2012 Merck Kaggle
competition. Deep learning in chemistry is a rapidly
developing discipline that has been aided by the
success of Al approaches in computer vision and
natural language processing in recent years. 5.
Researchers from InsilicoMedicine found powerful
inhibitors of dis-coidin domain receptor 1 (DDR1) in
21 days in 2019[9]. In 2020, MIT researchers
discovered halicin, a new antibiotic candidate that
fights bacteria resistant to antibiotics [8]. 46 Keep in
mind that Al can be used at various phases of drug
discovery, from determining drug response to
identifying and validating targets. This review
focuses on lead identification, which entails two basic
tasks: molecule creation and chemical property
prediction. Predicting a molecule's property value
based on its structure or learned representation is the
foundation of molecular property prediction (VS).
This can be used for a number of purposes, including
toxicity prediction, druginduced liver injury (DILI)
prediction, and drug-target interaction (DTI)
prediction. Drug design is based on molecule
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generation, which entails two tiers of tasks: 1)
Generating molecules in a realistic manner, that is,
within the limitations set by chemical principles, and
2) goal directed molecule generation, i.e., generating
chemically valid molecules with desired properties.

Al in drug discovery

More than 1060 molecules make up the enormous
chemical space, which encourages the synthesis of
numerous medicinal compounds. However, the
medication development process is limited by a lack
of sophisticated technologies, which makes it a costly
and time-consuming operation that Al can help with.
Al is able to identify hit and lead compounds, validate
drug targets more quickly, and optimize drug
structure design. Various uses of Al in drug discovery
are illustrated. [10] The size, growth, diversity, and
unpredictability of the data provide some serious data
challenges for Al notwithstanding its benefits.
Pharmaceutical businesses may have millions of
molecules in their drug development data sets, which
may be too large for typical machine learning methods
to handle A computational model based on the
quantitative structure-activity relationship (QSAR)
may predict a large number of compounds or basic
physicochemical characteristics, like log P or log D,
in a short amount of time. These models, however,
fall well short of forecasting intricate biological
characteristics, such the effectiveness and side effects
of substances. Small training sets, experimental data
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errors in training sets, and a dearth of experimental
validations are additional issues that QSAR-based
models must deal with. Recent advances in Al
techniques, including DL and pertinent modelling
studies, can be used to address these issues by
evaluating drug compounds' safety and effectiveness
using big data modelling and analysis. [11In order to
observe the benefits of DL in the pharmaceutical
industry's drug discovery process, Merck sponsored a
QSAR ML competition in 2012. For 15 drug
candidate absorption, distribution, metabolism,
excretion, and toxicity (ADMET) datasets, DL
models demonstrated a considerable level of
predictivity when compared to classic machine
learning techniques. By showing the distributions of
molecules and their characteristics, the vast virtual
chemical space hints at a geo-graphical map of
molecules. The purpose of the chemical space
depiction is to gather positional data about molecules
in the space in order to look for bioactive compounds;
thus, virtual screening (VS) aids in the selection of
suitable molecules for additional testing. A number
of chemical spaces, such as PubChem, ChemBank,
Drug Bank, and ChemDB, are publicly accessible.
Together  with  structural and  ligand-based
approaches, a variety of in silico techniques for virtual
screening compounds from virtual chemical spaces
offer improved profile analysis, quicker removal of

Drug Design

Al greatly speeds up the drug development timeline
in the field of drug design by improving the
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nonlead compounds, and therapeutic molecule
selection at a lower cost. To choose a lead ingredient,
drug design methods that take into account the
physical, chemical, and toxicological profiles include
coulomb matrices and molecular fingerprint
identification. The intended chemical structure of a
product can be predicted using a humber of factors,
including prediction models, molecular similarity, the
molecule synthesis process, and the usage of in silico
techniques. DeepVS, a novel method developed by
Pereira et al. for the docking of 40 receptors and 2950
ligands, demonstrated remarkable performance when
tested against 95,000 decoys. [12] Another method
evaluated the form similarity, biochemical activity,
and physicochemical characteristics of a cyclin-
dependent kinase-2 inhibitor in order to optimize its
potency profile using a multiobjective automated
replacement algorithm. Potential drug candidates
have been identified using QSAR modelling tools,
which have developed into Al-based QSAR
techniques like decision trees, random forest (RF),
support vector machines (SVMs), and linear

discriminant analysis (LDA), which can be used to
expedite QSAR analysis. When comparing the ability
of six Al systems to rank anonymous substances in
terms of biological activity with that of conventional
methods, King et al. discovered a small statistical
difference.

identification process of promising lead compounds.
The process from concept to clinic is streamlined by
Al's capacity to evaluate a broad range of molecular
configurations and forecast their possible binding
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affinities. [18] Finding tiny compounds that meet a
number of essential requirements is the core of
medication design. A favourable safety profile,
appropriate chemical and biological features,
pharmacological efficacy, and the innovation required
to protect intellectual property rights for economic
viability are some of these. [17] Traditional
approaches have a number of difficulties, including
lengthy input times, expensive computing costs, and
inconsistent dependability, even if computational
tools have transformed drug design and the approach
to discovery. [13] Al stands out as a solution that can
overcome these obstacles and improve the usefulness
and efficiency of computational methods in drug
development. [14] Because protein dysfunction is
connected to many diseases, studying protein
architecture is a crucial part of therapeutic creation.
The goal of structural drug design is to find tiny
compounds that have the ability to interact with
protein targets in a specific way. Protein three-
dimensional (3D) structure prediction has historically
been expensive, time-consuming, and has had poor
accuracy when done from scratch. The development
of artificial intelligence, specifically deep learning
and feature extraction technologies, has transformed
this aspect of medication creation. These methods
allow for the precise prediction of secondary protein
structures and the mapping of protein interactions,
which improves our understanding of the link
between structure and sequence. [16] The ultimate
goal is to use deep learning to predict 3D protein
structures with greater precision, allowing for the
investigation of protein-protein interactions (PPI) and
furthering the science of structural drug design. [15]
This incorporation of Al into drug design is a huge
step forward, promising to increase the speed, cost-
effectiveness, and success rate of drug development
initiatives.  Accurately  predicting the three-
dimensional (3D) structure of target proteins is an
important step in structure-based drug design and
discovery. [21] Al subsets such as machine learning
and deep learning are crucial for tackling this
dilemma. [20] Al-driven protein structure prediction
relies on substantial sequence and structural data
gathered from many sources. This dataset enables Al
models to be trained to recognize complicated
patterns that link amino acid sequences to their 3D
structures. [19] Al models, particularly those based on
deep learning, have demonstrated outstanding
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capacity to find complicated patterns in protein data
by utilizing modern computational approaches. These
models carefully extract information relating to amino
acid properties, structural motifs, and evolutionary
history, then use these insights to predict the 3D
structure of proteins based on their sequences.
AlphaFold, developed by Google DeepMind, is a
breakthrough achievement in Al-driven protein
structure prediction. To anticipate the 3D target
protein structure, AlphaFold evaluates the lengths
between nearby amino acids as well as the angles of
peptide bonds. AlphaFold successfully predicted 25
out of 43 protein structures in a recent review,
suggesting its potential in structure-based drug
development. [20] Traditional approaches for
determining protein structures, while accurate, are
frequently resource heavy. Al provides a faster and
more  cost-effective  alternative,  generating
trustworthy 3D structures from sequence data. [21]
This advancement enables the design of medications
that are specific to the structure of the target protein,
allowing for earlier predictions of treatment efficacy
and safety. Furthermore, Al techniques such as
molecular dynamics (MD) simulations can use
predicted 3D structures of proteins and drugs from
databases such as the Protein Data Bank (PDB) and
DrugBank to study the stability, dynamics, geometry,
and binding efficacy of protein-drug complexes,
providing valuable insights into their interactions over
time. [22] Al has also demonstrated promise in
modelling complicated relationships in biomedical
data using graph machine learning techniques. These
techniques, which portray chemical systems as graphs
with atoms as fundamental units, might capture
detailed patterns and interrelations  between
medications, diseases, PPI, and drug side effects,
potentially aiding in therapeutic repurposing and
response prediction.

Al in Polypharmacology

The landscape of drug discovery is experiencing a
substantial upheaval, shifting away from the old "one
drug, one target" paradigm and toward
polypharmacology, a technique that investigates
pharmacological interactions with several targets.
This change is driven by the opportunity to improve
therapy efficacy and more completely address the
complexities of complicated diseases. Al is crucial to
improvements in polypharmacology since it allows
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for the study of vast biological datasets, revealing
candidates with polypharmacological potential.
Polypharmacology has gained popularity due to a
better knowledge of disease causes and the molecular
complexities involved. This evolution has been
accelerated by the integration of large databases such
as ZINC, PubChem, and DrugBank, among others.
These resources combine massive volumes of data on
molecular routes, binding affinities, and chemical
characteristics, creating a rich tapestry for Al
algorithms to explore and comprehend the complex
linkages contained within. [28,29] The development
of platforms such as DeepDDI, which aim to clarify
drug-drug interactions and forecast alternate
therapeutic uses with fewer side effects, demonstrates
Al's impact. [27] Furthermore, Al's predictive powers
extend to discovering off-target interactions, boosting
our understanding of a drug's overall effects and
opening the door for safer, more effective therapies.
[24]. The polypharmacology paradigm shift has the
potential to improve medication repurposing, predict
off-target toxicity, and develop multitarget therapies
rationally. Computational methodologies powered by
Al have shown considerable promise in predicting
polypharmacological  profiles and  enabling
medication repurposing, which is the process of
discovering new applications for previously approved
pharmaceuticals. [26 Polypharmacology has been
spurred by the discovery that targeting numerous
nodes within complex biological networks may be
more successful than targeting a single node,
particularly for multifactorial disorders. This method
considers elements of biological networks such as
connectedness, redundancy, and pleiotropy, providing
a more comprehensive view of drug discovery [25,
30]. Polypharmacology also has implications for
prospective medication repurposing or re-profiling
opportunities, which can drastically reduce drug
development time and expense by using previously
approved pharmaceuticals for new therapeutic
indications. Successful examples of drug
repositioning have been documented in the literature,
and Al approaches can help find novel repurposing
opportunities [26,30].

Al in Chemical Synthesis

The efficiency and sustainability of chemical
synthesis are critical in the field of drug discovery.
The introduction of Al has substantially altered this
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field, improving reaction times and predicting
outcomes with amazing accuracy. The combination
of Al technologies with chemical expertise enables
the quick synthesis of complicated pharmacological
compounds, extending the range of potential
therapeutic discoveries [33]. The use of Al into
chemical synthesis represents a significant step
forward in drug research, increasing the efficiency
and precision of synthetic processes. Several studies
have emphasized Al's significant impact, particularly
in expediting the identification of optimal reaction
conditions and attaining error-free autonomous
synthesis. This is accomplished by a mix of
automation, real-time reaction monitoring, and
artificial intelligence, which combined allow for a
significant increase in the speed and reliability of the
experimental workflow [31]. However, relying on
automated systems and Al algorithms creates new
issues, including the potential of oversimplifying the
underlying intricacies of chemical interactions. Such
simplifications can lead to mistakes in understanding
and interpreting reaction dynamics, emphasizing the
importance of carefully integrating Al tools with a
solid understanding of chemical fundamentals. 7[32]

Al in Clinical Trial Design

The design of clinical trials, an important component
in bringing new pharmaceuticals to market, includes
establishing the number of events required to achieve
statistically significant results. This stage is critical
for estimating event rates within the target population,
calculating patient recruitment numbers, and
determining the follow-up time required to accrue the
desired event count. Throughout the trial, patients are
closely followed until a specific number of
occurrences occur. Developing a novel medicine for
the market is a time-consuming and resource-
intensive procedure. To effectively navigate the drug
development pipeline takes an average of 10 to 15
years and costs between USD 1.5 and 2.0 billion. [38]
A considerable portion of this time and effort is
committed to the clinical trial phases, which take
about 6-7 years and need a significant financial
investment. These clinical trials are critical for
determining the safety and efficacy of a medicinal
product in people for a specific illness condition.
However, the success rate is frighteningly low, with
only one out of every ten compounds entering clinical
trials achieving regulatory clearance, resulting in a
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substantial loss to the sector. 34]These failures can
result from a variety of circumstances, including
incorrect patient selection, a lack of technological
needs, and insufficient infrastructure. [35] Preclinical
activities, including as compound discovery, testing,
and regulatory processes, account for 50% of R&D
investment. Recruiting acceptable patients is crucial
for clinical trial success, as it accounts for one-third of
the trial duration. Inappropriate patient selection is
responsible for around 86% of trial failures. These
astonishing durations, financial burdens, and high
failure rates highlight the critical need for new
technologies that can streamline and improve the
clinical trial process, lowering time-to-market and
associated costs. With the vast digital medical data
available, the implementation of Al has emerged as a
promising solution, offering the potential to transform
various aspects of clinical trial design and execution,
ultimately accelerating the development and delivery
of novel therapeutic interventions. [39] Al algorithms
can quickly screen thousands of compounds by
modelling interactions between drug molecules and
biological targets, dramatically lowering the time and
resources necessary for early-stage drug discovery.
One critical part of drug discovery and biotechnology
is the simulation of biomolecular structures utilizing
physics-based atomic approaches such as molecular
dynamics (MD). These simulations entail running
MD simulations on 3D structures of proteins and
medicines available from sources such as the Protein
Data Bank (PDB) and DrugBank, as well as those
predicted by powerful Al  models like
AlphaFold2[36]. This method examines the stability,
dynamics, shape, and binding efficiency of protein-
drug complexes, providing a time timeline of atomic
movements. Advanced data analysis tools, such as
deep learning, can then be used to examine these
trajectories and obtain new insights into the structural
changes and interactions occurring within complex
biological systems. This knowledge can help to
answer concerns about diseases, pathways, and drug
response or resistance mechanisms. Atomwise, a
company that specializes in Al-driven drug
development, has used its Al platform to test a large
number of tiny compounds against specific protein
targets, revealing new therapeutic candidates. For
example, they successfully uncovered possible Ebola
remedies by  virtual screening current
pharmaceuticals, revealing two molecules that block
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the Ebola virus [37]. This approach speeds up early-
stage drug discovery by expediting the identification
of prospective candidates.

Challenges and Limitations of Al in Drug
Discovery

Despite Al's great promise to revolutionize the
landscape of drug discovery, several serious barriers
must be overcome before its full potential can be
achieved. Securing data quality and accessibility
presents a big problem. Al models are data-driven,
and their efficacy is determined on the quantity and
diversity of the data used to train them [46].
Acquiring highquality biological data is difficult due
to privacy laws and data dispersion across multiple
organizations. Furthermore, gathering the requisite
data can be costly and time-consuming, particularly
for small research teams. As a result, collaboration
and data-sharing activities are critical to provide
access to complete and diverse datasets. Data bias and
generalizability are also major issues. When Al
algorithms are trained on biased data, they may make
false predictions. These biases can result from
underrepresentation of various populations in clinical
trials, geographical discrepancies in data sources, or
differences between healthcare providers.
Furthermore, overfitting, which occurs when a model
performs well on training data but struggles on unseen
data, can lead to the identification of inefficient
medication candidates or false positives. Researchers
can use bias correction approaches during the training
phase of Al models to reduce the impact of biases on
model outputs. For example, the SMOTE (Synthetic
Minority Oversampling Technique) bias correction
technique is used in an Al-powered drug discovery
study to address data bias. SMOTE creates synthetic
data points for underrepresented groups in the dataset,
balancing it and reducing bias impact. Bias correction
solutions are being investigated, however there is no
general solution. Nonetheless, by using thorough
dataset selection, processing, and bias correction
approaches, researchers can reduce the influence of
data bias in Al applications. Processing power and
resource intensity are also important considerations,
particularly for deep learning models. These models
necessitate significant computational resources for
both training and inference, which presents challenges
for smaller pharmaceutical corporations and academic
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research teams with restricted budgets. Cloud-based
Al services and cooperation with Al technology
providers are used to minimize computing costs and
improve accessibility. Furthermore, regulatory
approval and validation are crucial steps for Al
models in drug research. Demonstrating the safety,
effectiveness, and repeatability of Al-generated
outcomes is critical for regulatory approval and
developing trust in the pharmaceutical industry.
Collaboration among regulatory bodies,
pharmaceutical firms, and Al researchers is critical for
developing validation protocols and standards. Cost
concerns arise from the requirement for major early
investments in technology, data collecting, and
gualified workers. Addressing these financial issues
would necessitate a long-term strategy that includes
investigating  government incentives, strategic
alliances, and joint funding approaches.

Emergence of Al for Drug Discovery
The Knowledge Deficit

One of the most difficult issues that human
investigators and Al systems encounter in drug
development is managing vast amounts of diverse
data of different quality. The rapid development of
data and processing capacity has been cited as
justification for a fourth paradigm, often known as
data-driven scientific discovery. For the "why" and
"what if" sorts of questions, relevant, preferably
credible data must be located, inferred when absent,
and connected using evidence-based reasoning, as
depicted by the "connect the dots" metaphor. It is
increasingly obvious that current drug discovery
requires computer-based Artificial intelligence is
defined as systems that can think intelligently and
recognize patterns. These Al systems must be able to
weigh data elements and collect examples of patterns
in order to determine confidence and rationale.
Automated systems that digest large sets of data using
named entity recognition are an essential component
of public domain databases, such as DISEASES for
gene-disease associations, STRING for protein-
protein interactions, and Open Targets and Pharos for
complex disease-protein-drug annotations, to name a
few examples. Together with Al-based protein
structure prediction algorithms like Alpha Fold and
RoseTTAFold, these resources have the potential to
speed Al4DD.
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An in-depth scientometric analysis of AIl4DD
revealed a significant increase in publications, from
49 in 2011 to 333 by 2020. The number of Al-
powered drug discovery platforms is expected to
expand in the near future. The pharmaceutical and
biotech businesses, which move Al-driven drug
discovery into commercial application, regularly
collaborate with academic institutions, which often
lead the development of algorithms and procedures.
Over the last two decades, Al and machine learning
have gone from being peripheral technologies to
playing a major role in drug discovery. Today, we are
closer than ever to accomplishing this long-awaited
goal.

REFERENCE

1. Vamathevan, J., Clark, D., Czodrowski, P., et al.
(2019). Applications of machine learning in drug
discovery and development. Nature Reviews
Drug Discovery, 18(6), 463-477.
https://doi.org/10.1038/s41573-019-0024-5

2. Chen, H., Engkvist, O., Wang, Y., Olivecrona,
M., & Blaschke, T. (2018). The rise of deep
learning in drug discovery. Drug Discovery
Today, 23(6), 1241-1250.
https://doi.org/10.1016/j.drudis.2018.01.039

3. Zhavoronkov, A., Ivanenkov, Y. A., Aliper, A., et
al. (2019). Deep learning enables rapid
identification of potent DDR1 kinase inhibitors.
Nature Biotechnology, 37(9), 1038-1040.
https://doi.org/10.1038/s41587-019-0224-x

4. Mayr, A., Klambauer, G., Unterthiner, T., &
Hochreiter, S. (2016). DeepTox: Toxicity
prediction using deep learning. Frontiers in
Environmental Science, 3, 80.
https://doi.org/10.3389/fenvs.2015.00080

5. Amann, J., Blasimme, A., Vayena, E., Frey, D., &
Madai, V. 1. (2020). Explainability for artificial
intelligence in healthcare: A multidisciplinary
perspective. BMC Medical Informatics and
Decision Making, 20(1), 310.
https://doi.org/10.1186/s12911-020-01332-6

6. Walters, W. P., & Murcko, M. A. (2020).
Assessing the impact of generative Al on
medicinal chemistry. Nature Biotechnology, 38,
143-145.  https://doi.org/10.1038/s41587-019-
0361-2

441 |Page



10.
11.

12.

13.

14.

15.

1@, INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH AND TECHNDLOGY
-

Sayali Pagire, Int. J. Sci. R. Tech., 2025 2(10), 435-444 [Review

Chen, H., Engkvist, O., Wang, Y., Olivecrona,
M., & Blaschke, T. (2018). The rise of deep
learning in drug discovery. Drug Discovery
Today, 23(6), 1241-1250.
https://doi.org/10.1016/j.drudis.2018.01.039
Stokes, J. M., Yang, K., Swanson, K., Jin, W.,
Cubillos-Ruiz, A., Donghia, N. M., ... & Collins,
J. J. (2020). A deep learning approach to
antibiotic discovery. Cell, 180(4), 688-702.e13.
https://doi.org/10.1016/j.cell.2020.01.021
Zhavoronkov, A., Ivanenkov, Y. A., Aliper, A,,
Veselov, M. S., Aladinskiy, V. A., Aladinskaya,
A. V. ... & Aspuru-Guzik, A. (2019). Deep
learning enables rapid identification of potent
DDR1 kinase inhibitors. Nature Biotechnology,
37(9), 1038-1040.
https://doi.org/10.1038/s41587-019-0224-x
Mak, K.-K., & Pichika, M. R. (2019). Artificial
intelligence in drug development: Present status
and future prospects. Drug Discovery Today,
24(3), 773-780.
https://doi.org/10.1016/j.drudis.2018.11.014
Zhou, J., Wang, Q., Pan, S., & Du, X. (2020).
Artificial intelligence in COVID-19 drug
repurposing. The Lancet Digital Health, 2(12),
e667—e676.
https://doi.org/10.1016/S25897500(20)30223-4
Pereira, J. C., Caffarena, E. R., & dos Santos, C.
N. (2016). Boosting dockingbased virtual
screening with deep learning. Journal of
Chemical Information and Modeling, 56(12),
2495— 2506.
https://doi.org/10.1021/acs.jcim.6b00340

Chen, H., Engkvist, O., Wang, Y., Olivecrona,
M., & Blaschke, T. (2018). The rise of deep
learning in drug discovery. Drug Discovery
Today, 23(6), 1241-1250.
https://doi.org/10.1016/j.drudis.2018.01.039
Ching, T., Himmelstein, D. S., Beaulieu-Jones, B.
K., Kalinin, A. A,, Do, B. T., Way, G. P, ... &
Greene, C. S. (2018). Opportunities and obstacles
for deep learning in biology and medicine.
Journal of the Royal Society Interface, 15(141),
20170387. https://doi.org/10.1098/rsif.2017.0387
Jumper, J., Evans, R., Pritzel, A., Green, T.,
Figurnov, M., Ronneberger, O., ... & Hassabis, D.
(2021). Highly accurate protein structure
prediction with AlphaFold. Nature, 596(7873),

16.

17.

18.

19.

20.

21.

22.

23.

24,

583-589.
03819-2
Senior, A. W., Evans, R., Jumper, J., Kirkpatrick,
J., Sifre, L., Green, T., ... & Kavukcuoglu, K.
(2020). Improved protein structure prediction
using potentials from deep learning. Nature,
577(7792), 706-710.
https://doi.org/10.1038/s41586019-1923-7
Vamathevan, J., Clark, D., Czodrowski, P.,
Dunham, 1., Ferran, E., Lee, G., ... & Zhao, S.
(2019). Applications of machine learning in drug
discovery and development. Nature Reviews
Drug Discovery, 18(6), 463-477.
https://doi.org/10.1038/s41573-019-0024-5
Zhavoronkov, A., Ivanenkov, Y. A., Aliper, A.,
Veselov, M. S., Aladinskiy, V. A., Aladinskaya,
A V., ... & Aspuru-Guzik, A. (2019). Deep
learning enables rapid

Callaway, E. (2020). ‘It will change everything’:
DeepMind’s Al makes gigantic leap in solving
protein structures. Nature, 588(7837), 203-204.
https://doi.org/10.1038/d41586020-03348-4
Jumper, J., Evans, R., Pritzel, A., Green, T,
Figurnov, M., Ronneberger, O., ... & Hassabis, D.
(2021). Highly accurate protein structure
prediction with AlphaFold. Nature, 596(7873),
583-589.  https://doi.org/10.1038/s41586-021-
03819-2

Senior, A. W., Evans, R., Jumper, J., Kirkpatrick,
J., Sifre, L., Green, T., ... & Kavukcuoglu, K.
(2020). Improved protein structure prediction
using potentials from deep learning. Nature,
577(7792), 706-710.
https://doi.org/10.1038/s41586019-1923-7
Tunyasuvunakool, K., Adler, J., Wu, Z., Green,
T., Zielinski, M., Zidek, A., ... & Hassabis, D.
(2021). Highly accurate protein structure
prediction for the human proteome. Nature,
596(7873), 590-596.
https://doi.org/10.1038/s41586-021-03828-1
Anighoro, A., Bajorath, J., & Rastelli, G. (2014).
Polypharmacology: Challenges and opportunities
in drug discovery. Journal of Medicinal
Chemistry, 57(19), 7874-7887.
https://doi.org/10.1021/jm5006463

Bocci, G., Cassetta, L., & Gozzi, G. (2017). In
silico prediction of off-targets for improved drug
safety. Frontiers in Pharmacology, 8, 280.
https://doi.org/10.3389/fphar.2017.00280

https://doi.org/10.1038/s41586-021-

442 |[Page



25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

.4

YMELET,
=

Sayali Pagire, Int. J. Sci. R. Tech., 2025 2(10), 435-444 [Review

Hopkins, A. L. (2008). Network pharmacology:
The next paradigm in drug discovery. Nature
Chemical Biology, 4(11), 682-690.
https://doi.org/10.1038/nchembio.118
Pushpakom, S., lorio, F., Eyers, P. A., et al.
(2019). Drug repurposing: Progress, challenges
and recommendations. Nature Reviews Drug
Discovery, 18(1), 41-58.
https://doi.org/10.1038/nrd.2018.168

Ryu, J. Y., Kim, H. U.,, & Lee, S. Y. (2018). Deep
learning improves prediction of drug— drug and
drug-target interactions. Proceedings of the
National Academy of Sciences, 115(18), E4304—
E4311. https://doi.org/10.1073/pnas.1803294115
Sterling, T., & Irwin, J. J. (2015). ZINC 15 -
Ligand discovery for everyone. Journal of
Chemical Information and Modeling, 55(11),
2324-2337.
https://doi.org/10.1021/acs.jcim.5b00559
Wishart, D. S., Feunang, Y. D., Guo, A. C,, etal.
(2018). DrugBank 5.0: A major update to the
DrugBank database for 2018. Nucleic Acids
Research, 46(D1), D1074-D1082.
https://doi.org/10.1093/nar/gkx1037

Xiong, G., Luo, Y., Ji, W., etal. (2024). Artificial
intelligence for polypharmacology and multi-
target drug discovery. International Journal of
Molecular Sciences, 25(14), 6996.
https://doi.org/10.3390/ijms25146996

Coley, C. W., Eyke, N. S., & Jensen, K. F. (2019).
Autonomous discovery in the chemical sciences
part 11: Outlook. Accounts of Chemical Research,
53(5), 895-906.
https://doi.org/10.1021/acs.accounts.9b00640
Schwaller, P., Laino, T., Gaudin, T., Bolgar, P.,
Hunter, C. A., Bekas, C., & Lee, A. A. (2020).
Machine intelligence for chemical reaction
prediction. Chemical Science, 11(2), 331- 339.
https://doi.org/10.1039/C9SC05704H

Segler, M. H. S., Preuss, M., & Waller, M. P.
(2018). Planning chemical syntheses with deep
neural networks and symbolic Al. Nature,
555(7698), 604-610.
https://doi.org/10.1038/nature25978

DiMasi, J. A., Grabowski, H. G., & Hansen, R.
W. (2016). Innovation in the pharmaceutical
industry: New estimates of R&D costs. Journal of
Health Economics, 47, 20,33.
https://doi.org/10.1016/j.jhealeco.2016.01.012

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH AND TECHNDLOGY

Harrer, S., Shah, P., Antony, B., & Hu, J. (2019).
Artificial intelligence for clinical trial design.
Trends in Pharmacological Sciences, 40(8), 577—
591. https://doi.org/10.1016/j.tips.2019.06.004
Jumper, J., Evans, R., Pritzel, A., et al. (2021).
Highly accurate protein structure prediction with
AlphaFold.  Nature, 596(7873), 583-589.
https://doi.org/10.1038/s41586-021-03819-2
Wallach, 1., Dzamba, M., & Heifets, A. (2015).
AtomNet: A deep convolutional neural network
for bioactivity prediction in structure-based drug
discovery. arXiv preprint arXiv:1510.02855.
Wong, C. H., Siah, K. W., & Lo, A. W. (2019).
Estimation of clinical trial success rates and
related parameters. Biostatistics, 20(2), 273-286.
https://doi.org/10.1093/biostatistics/kxx069

Yu, K. H., Beam, A. L., & Kohane, I. S. (2018).
Artificial intelligence in healthcare. Nature
Biomedical Engineering, 2(10), 719-731.
https://doi.org/10.1038/s41551-018-0305-z
Baek, M., DiMaio, F., Anishchenko, I., et al.
(2021). Accurate prediction of protein structures
and interactions using a three-track neural
network.  Science, 373(6557), 871-876.
https://doi.org/10.1126/science.abj8754

Chawla, N. V., Bowyer, K. W,, Hall, L. O., &
Kegelmeyer, W. P. (2002). SMOTE: Synthetic
minority oversampling technique. Journal of
Artificial Intelligence Research, 16, 321-357.
https://doi.org/10.1613/jair.953

Hey, T., Tansley, S., & Tolle, K. (2009). The
Fourth Paradigm: Data-Intensive Scientific
Discovery. Microsoft Research.

Mak, K. K., & Pichika, M. R. (2019). Artificial
intelligence in drug development: Present status
and future prospects. Drug Discovery Today,
24(3), 773-780.
https://doi.org/10.1016/j.drudis.2018.11.014
Szklarczyk, D., Gable, A. L., Lyon, D., et al.
(2021). STRING v11: Protein—protein association
networks with increased coverage, supporting
functional discovery in genome-wide datasets.
Nucleic Acids Research, 47(D1), D607-D613.
https://doi.org/10.1093/nar/gky1131

Topol, E. J. (2019). High-performance medicine:
The convergence of human and artificial
intelligence. Nature Medicine, 25(1), 44-56.
https://doi.org/10.1038/s41591-018-0300-7

443 |[Page



Sayali Pagire, Int. J. Sci. R. Tech., 2025 2(10), 435-444 [Review

46. Vamathevan, J., Clark, D., Czodrowski, P., et al.
(2019). Applications of machine learning in drug
discovery and development. Nature Reviews
Drug Discovery, 18(6), 463-477.
https://doi.org/10.1038/s41573-019-0024-5

47. Zhavoronkov, A., Ivanenkov, Y. A., Aliper, A., et
al. (2019). Deep learning enables rapid
identification of potent DDR1 kinase inhibitors.
Nature Biotechnology, 37(9), 1038-1040.
https://doi.org/10.1038/s41587019-0224-X.

HOW TO CITE: Aadesh Varpe, Om Ugalmugale,
Sayali Pagire*, Aditya Vighne, Artificial Intelligence in
Drug Discovery, Int. J. Sci. R. Tech., 2025, 2 (10), 435-
444. https://doi.org/10.5281/zenodo.17444647

1@, INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH AND TECHNDLOGY 444 |Page

/—'\



