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INTRODUCTION 

Drug Discovery     

In recent years, there has been a lot of interest in 

medicinal chemistry's application of artificial 

intelligence (AI) as a potential way to transform the 

pharmaceutical sector.  [1] The process of finding and 

creating new drugs, or drug discovery, is a difficult 

and drawn-out undertaking that has historically relied 

on time-consuming methods like high-throughput 

screening and trial-and-error testing.  However, by 

making it possible to analyze vast volumes of data 

more accurately and efficiently, artificial intelligence 

(AI) techniques like machine learning (ML) and 

natural language processing have the potential to 

speed up and enhance this process [2]. The scientists 

recently revealed the successful application of deep 

learning (DL) to accurately predict the potency of 

medicinal molecules.  [3] . The toxicity of potential 

medications has also been predicted by AIbased 

techniques [4].  These and other studies have 

demonstrated AI's potential to increase the efficacy 

and efficiency of drug discovery procedures.  But 

there are drawbacks and restrictions to using AI to 

create novel bioactive chemicals.  To completely 

comprehend the benefits and limitations of AI in this 

field, more research is required, and ethical 

considerations must be taken into account.  

Notwithstanding these obstacles, it is anticipated that 

AI will play a major role in the creation of novel drugs 

and treatments during the coming years. [6].  
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Drug Discovery in the AI Era     

AI has been used extensively in the search for new 

drugs. Machine learning methods, such random forest 

(RF), have been used for VS and QSAR since the 

early 2000s. [7] The deep learning era began in 2012 

with AlexNet41. Deep neural networks (DNN) beat 

the conventional RF model in predicting chemical 

activity shortly after in the 2012 Merck Kaggle 

competition. Deep learning in chemistry is a rapidly 

developing discipline that has been aided by the 

success of AI approaches in computer vision and 

natural language processing in recent years. 5. 

Researchers from InsilicoMedicine found powerful 

inhibitors of dis-coidin domain receptor 1 (DDR1) in 

21 days in 2019[9]. In 2020, MIT researchers 

discovered halicin, a new antibiotic candidate that 

fights bacteria resistant to antibiotics [8].  46 Keep in 

mind that AI can be used at various phases of drug 

discovery, from determining drug response to 

identifying and validating targets.  This review 

focuses on lead identification, which entails two basic 

tasks: molecule creation and chemical property 

prediction.  Predicting a molecule's property value 

based on its structure or learned representation is the 

foundation of molecular property prediction (VS). 

This can be used for a number of purposes, including 

toxicity prediction, druginduced liver injury (DILI) 

prediction, and drug-target interaction (DTI) 

prediction.  Drug design is based on molecule 

generation, which entails two tiers of tasks:  1) 

Generating molecules in a realistic manner, that is, 

within the limitations set by chemical principles, and 

2) goal directed molecule generation, i.e., generating 

chemically valid molecules with desired properties. 

AI in drug discovery     

More than 1060 molecules make up the enormous 

chemical space, which encourages the synthesis of 

numerous medicinal compounds.  However, the 

medication development process is limited by a lack 

of sophisticated technologies, which makes it a costly 

and time-consuming operation that AI can help with.  

AI is able to identify hit and lead compounds, validate 

drug targets more quickly, and optimize drug 

structure design. Various uses of AI in drug discovery 

are illustrated. [10] The size, growth, diversity, and 

unpredictability of the data provide some serious data 

challenges for AI notwithstanding its benefits.  

Pharmaceutical businesses may have millions of 

molecules in their drug development data sets, which 

may be too large for typical machine learning methods 

to handle A computational model based on the 

quantitative structure-activity relationship (QSAR) 

may predict a large number of compounds or basic 

physicochemical characteristics, like log P or log D, 

in a short amount of time.  These models, however, 

fall well short of forecasting intricate biological 

characteristics, such the effectiveness and side effects 

of substances.  Small training sets, experimental data 
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errors in training sets, and a dearth of experimental 

validations are additional issues that QSAR-based 

models must deal with.  Recent advances in AI 

techniques, including DL and pertinent modelling 

studies, can be used to address these issues by 

evaluating drug compounds' safety and effectiveness 

using big data modelling and analysis. [11In order to 

observe the benefits of DL in the pharmaceutical 

industry's drug discovery process, Merck sponsored a 

QSAR ML competition in 2012.  For 15 drug 

candidate absorption, distribution, metabolism, 

excretion, and toxicity (ADMET) datasets, DL 

models demonstrated a considerable level of 

predictivity when compared to classic machine 

learning techniques. By showing the distributions of 

molecules and their characteristics, the vast virtual 

chemical space hints at a geo-graphical map of 

molecules.  The purpose of the chemical space 

depiction is to gather positional data about molecules 

in the space in order to look for bioactive compounds; 

thus, virtual screening (VS) aids in the selection of 

suitable molecules for additional testing.  A number 

of chemical spaces, such as PubChem, ChemBank, 

Drug Bank, and ChemDB, are publicly accessible. 

Together with structural and ligand-based 

approaches, a variety of in silico techniques for virtual 

screening compounds from virtual chemical spaces 

offer improved profile analysis, quicker removal of 

nonlead compounds, and therapeutic molecule 

selection at a lower cost.   To choose a lead ingredient, 

drug design methods that take into account the 

physical, chemical, and toxicological profiles include 

coulomb matrices and molecular fingerprint 

identification. The intended chemical structure of a 

product can be predicted using a number of factors, 

including prediction models, molecular similarity, the 

molecule synthesis process, and the usage of in silico 

techniques. DeepVS, a novel method developed by 

Pereira et al. for the docking of 40 receptors and 2950 

ligands, demonstrated remarkable performance when 

tested against 95,000 decoys.  [12] Another method 

evaluated the form similarity, biochemical activity, 

and physicochemical characteristics of a cyclin-

dependent kinase-2 inhibitor in order to optimize its 

potency profile using a multiobjective automated 

replacement algorithm. Potential drug candidates 

have been identified using QSAR modelling tools, 

which have developed into AI-based QSAR 

techniques like decision trees, random forest (RF), 

support vector machines (SVMs), and linear 

discriminant analysis (LDA), which can be used to 

expedite QSAR analysis.  When comparing the ability 

of six AI systems to rank anonymous substances in 

terms of biological activity with that of conventional 

methods, King et al. discovered a small statistical 

difference. 

Drug Design     

AI greatly speeds up the drug development timeline 

in the field of drug design by improving the 

identification process of promising lead compounds. 

The process from concept to clinic is streamlined by 

AI's capacity to evaluate a broad range of molecular 

configurations and forecast their possible binding 
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affinities. [18] Finding tiny compounds that meet a 

number of essential requirements is the core of 

medication design. A favourable safety profile, 

appropriate chemical and biological features, 

pharmacological efficacy, and the innovation required 

to protect intellectual property rights for economic 

viability are some of these. [17] Traditional 

approaches have a number of difficulties, including 

lengthy input times, expensive computing costs, and 

inconsistent dependability, even if computational 

tools have transformed drug design and the approach 

to discovery. [13] AI stands out as a solution that can 

overcome these obstacles and improve the usefulness 

and efficiency of computational methods in drug 

development. [14] Because protein dysfunction is 

connected to many diseases, studying protein 

architecture is a crucial part of therapeutic creation.  

The goal of structural drug design is to find tiny 

compounds that have the ability to interact with 

protein targets in a specific way.  Protein three-

dimensional (3D) structure prediction has historically 

been expensive, time-consuming, and has had poor 

accuracy when done from scratch. The development 

of artificial intelligence, specifically deep learning 

and feature extraction technologies, has transformed 

this aspect of medication creation.  These methods 

allow for the precise prediction of secondary protein 

structures and the mapping of protein interactions, 

which improves our understanding of the link 

between structure and sequence. [16] The ultimate 

goal is to use deep learning to predict 3D protein 

structures with greater precision, allowing for the 

investigation of protein-protein interactions (PPI) and 

furthering the science of structural drug design.  [15] 

This incorporation of AI into drug design is a huge 

step forward, promising to increase the speed, cost-

effectiveness, and success rate of drug development 

initiatives. Accurately predicting the three-

dimensional (3D) structure of target proteins is an 

important step in structure-based drug design and 

discovery. [21] AI subsets such as machine learning 

and deep learning are crucial for tackling this 

dilemma. [20] AI-driven protein structure prediction 

relies on substantial sequence and structural data 

gathered from many sources.  This dataset enables AI 

models to be trained to recognize complicated 

patterns that link amino acid sequences to their 3D 

structures. [19] AI models, particularly those based on 

deep learning, have demonstrated outstanding 

capacity to find complicated patterns in protein data 

by utilizing modern computational approaches.  These 

models carefully extract information relating to amino 

acid properties, structural motifs, and evolutionary 

history, then use these insights to predict the 3D 

structure of proteins based on their sequences.  

AlphaFold, developed by Google DeepMind, is a 

breakthrough achievement in AI-driven protein 

structure prediction.  To anticipate the 3D target 

protein structure, AlphaFold evaluates the lengths 

between nearby amino acids as well as the angles of 

peptide bonds.  AlphaFold successfully predicted 25 

out of 43 protein structures in a recent review, 

suggesting its potential in structure-based drug 

development.   [20] Traditional approaches for 

determining protein structures, while accurate, are 

frequently resource heavy.  AI provides a faster and 

more cost-effective alternative, generating 

trustworthy 3D structures from sequence data.  [21] 

This advancement enables the design of medications 

that are specific to the structure of the target protein, 

allowing for earlier predictions of treatment efficacy 

and safety.  Furthermore, AI techniques such as 

molecular dynamics (MD) simulations can use 

predicted 3D structures of proteins and drugs from 

databases such as the Protein Data Bank (PDB) and 

DrugBank to study the stability, dynamics, geometry, 

and binding efficacy of protein-drug complexes, 

providing valuable insights into their interactions over 

time.  [22] AI has also demonstrated promise in 

modelling complicated relationships in biomedical 

data using graph machine learning techniques. These 

techniques, which portray chemical systems as graphs 

with atoms as fundamental units, might capture 

detailed patterns and interrelations between 

medications, diseases, PPI, and drug side effects, 

potentially aiding in therapeutic repurposing and 

response prediction. 

AI in Polypharmacology     

The landscape of drug discovery is experiencing a 

substantial upheaval, shifting away from the old "one 

drug, one target" paradigm and toward 

polypharmacology, a technique that investigates 

pharmacological interactions with several targets.  

This change is driven by the opportunity to improve 

therapy efficacy and more completely address the 

complexities of complicated diseases.  AI is crucial to 

improvements in polypharmacology since it allows 
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for the study of vast biological datasets, revealing 

candidates with polypharmacological potential.  

Polypharmacology has gained popularity due to a 

better knowledge of disease causes and the molecular 

complexities involved. This evolution has been 

accelerated by the integration of large databases such 

as ZINC, PubChem, and DrugBank, among others.  

These resources combine massive volumes of data on 

molecular routes, binding affinities, and chemical 

characteristics, creating a rich tapestry for AI 

algorithms to explore and comprehend the complex 

linkages contained within.  [28,29]    The development 

of platforms such as DeepDDI, which aim to clarify 

drug-drug interactions and forecast alternate 

therapeutic uses with fewer side effects, demonstrates 

AI's impact. [27] Furthermore, AI's predictive powers 

extend to discovering off-target interactions, boosting 

our understanding of a drug's overall effects and 

opening the door for safer, more effective therapies. 

[24]. The polypharmacology paradigm shift has the 

potential to improve medication repurposing, predict 

off-target toxicity, and develop multitarget therapies 

rationally.  Computational methodologies powered by 

AI have shown considerable promise in predicting 

polypharmacological profiles and enabling 

medication repurposing, which is the process of 

discovering new applications for previously approved 

pharmaceuticals.  [26 Polypharmacology has been 

spurred by the discovery that targeting numerous 

nodes within complex biological networks may be 

more successful than targeting a single node, 

particularly for multifactorial disorders.  This method 

considers elements of biological networks such as 

connectedness, redundancy, and pleiotropy, providing 

a more comprehensive view of drug discovery [25, 

30].  Polypharmacology also has implications for 

prospective medication repurposing or re-profiling 

opportunities, which can drastically reduce drug 

development time and expense by using previously 

approved pharmaceuticals for new therapeutic 

indications.  Successful examples of drug 

repositioning have been documented in the literature, 

and AI approaches can help find novel repurposing 

opportunities [26,30].  

AI in Chemical Synthesis     

The efficiency and sustainability of chemical 

synthesis are critical in the field of drug discovery.  

The introduction of AI has substantially altered this 

field, improving reaction times and predicting 

outcomes with amazing accuracy.  The combination 

of AI technologies with chemical expertise enables 

the quick synthesis of complicated pharmacological 

compounds, extending the range of potential 

therapeutic discoveries [33].  The use of AI into 

chemical synthesis represents a significant step 

forward in drug research, increasing the efficiency 

and precision of synthetic processes.   Several studies 

have emphasized AI's significant impact, particularly 

in expediting the identification of optimal reaction 

conditions and attaining error-free autonomous 

synthesis. This is accomplished by a mix of 

automation, real-time reaction monitoring, and 

artificial intelligence, which combined allow for a 

significant increase in the speed and reliability of the 

experimental workflow [31]. However, relying on 

automated systems and AI algorithms creates new 

issues, including the potential of oversimplifying the 

underlying intricacies of chemical interactions.  Such 

simplifications can lead to mistakes in understanding 

and interpreting reaction dynamics, emphasizing the 

importance of carefully integrating AI tools with a 

solid understanding of chemical fundamentals. 7[32]     

AI in Clinical Trial Design     

The design of clinical trials, an important component 

in bringing new pharmaceuticals to market, includes 

establishing the number of events required to achieve 

statistically significant results.  This stage is critical 

for estimating event rates within the target population, 

calculating patient recruitment numbers, and 

determining the follow-up time required to accrue the 

desired event count.  Throughout the trial, patients are 

closely followed until a specific number of 

occurrences occur.  Developing a novel medicine for 

the market is a time-consuming and resource-

intensive procedure.  To effectively navigate the drug 

development pipeline takes an average of 10 to 15 

years and costs between USD 1.5 and 2.0 billion.  [38]  

A considerable portion of this time and effort is 

committed to the clinical trial phases, which take 

about 6-7 years and need a significant financial 

investment. These clinical trials are critical for 

determining the safety and efficacy of a medicinal 

product in people for a specific illness condition. 

However, the success rate is frighteningly low, with 

only one out of every ten compounds entering clinical 

trials achieving regulatory clearance, resulting in a 
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substantial loss to the sector. 34]These failures can 

result from a variety of circumstances, including 

incorrect patient selection, a lack of technological 

needs, and insufficient infrastructure. [35] Preclinical 

activities, including as compound discovery, testing, 

and regulatory processes, account for 50% of R&D 

investment.  Recruiting acceptable patients is crucial 

for clinical trial success, as it accounts for one-third of 

the trial duration. Inappropriate patient selection is 

responsible for around 86% of trial failures.  These 

astonishing durations, financial burdens, and high 

failure rates highlight the critical need for new 

technologies that can streamline and improve the 

clinical trial process, lowering time-to-market and 

associated costs. With the vast digital medical data 

available, the implementation of AI has emerged as a 

promising solution, offering the potential to transform 

various aspects of clinical trial design and execution, 

ultimately accelerating the development and delivery 

of novel therapeutic interventions. [39] AI algorithms 

can quickly screen thousands of compounds by 

modelling interactions between drug molecules and 

biological targets, dramatically lowering the time and 

resources necessary for early-stage drug discovery.  

One critical part of drug discovery and biotechnology 

is the simulation of biomolecular structures utilizing 

physics-based atomic approaches such as molecular 

dynamics (MD).  These simulations entail running 

MD simulations on 3D structures of proteins and 

medicines available from sources such as the Protein 

Data Bank (PDB) and DrugBank, as well as those 

predicted by powerful AI models like 

AlphaFold2[36].  This method examines the stability, 

dynamics, shape, and binding efficiency of protein-

drug complexes, providing a time timeline of atomic 

movements. Advanced data analysis tools, such as 

deep learning, can then be used to examine these 

trajectories and obtain new insights into the structural 

changes and interactions occurring within complex 

biological systems.  This knowledge can help to 

answer concerns about diseases, pathways, and drug 

response or resistance mechanisms.  Atomwise, a 

company that specializes in AI-driven drug 

development, has used its AI platform to test a large 

number of tiny compounds against specific protein 

targets, revealing new therapeutic candidates.  For 

example, they successfully uncovered possible Ebola 

remedies by virtual screening current 

pharmaceuticals, revealing two molecules that block 

the Ebola virus [37].  This approach speeds up early-

stage drug discovery by expediting the identification 

of prospective candidates.  

Challenges and Limitations of AI in Drug     

Discovery     

Despite AI's great promise to revolutionize the 

landscape of drug discovery, several serious barriers 

must be overcome before its full potential can be 

achieved.  Securing data quality and accessibility 

presents a big problem.  AI models are data-driven, 

and their efficacy is determined on the quantity and 

diversity of the data used to train them [46].  

Acquiring highquality biological data is difficult due 

to privacy laws and data dispersion across multiple 

organizations.  Furthermore, gathering the requisite 

data can be costly and time-consuming, particularly 

for small research teams.  As a result, collaboration 

and data-sharing activities are critical to provide 

access to complete and diverse datasets. Data bias and 

generalizability are also major issues.  When AI 

algorithms are trained on biased data, they may make 

false predictions.  These biases can result from 

underrepresentation of various populations in clinical 

trials, geographical discrepancies in data sources, or 

differences between healthcare providers.  

Furthermore, overfitting, which occurs when a model 

performs well on training data but struggles on unseen 

data, can lead to the identification of inefficient 

medication candidates or false positives.  Researchers 

can use bias correction approaches during the training 

phase of AI models to reduce the impact of biases on 

model outputs.  For example, the SMOTE (Synthetic 

Minority Oversampling Technique) bias correction 

technique is used in an AI-powered drug discovery 

study to address data bias. SMOTE creates synthetic 

data points for underrepresented groups in the dataset, 

balancing it and reducing bias impact.  Bias correction 

solutions are being investigated, however there is no 

general solution. Nonetheless, by using thorough 

dataset selection, processing, and bias correction 

approaches, researchers can reduce the influence of 

data bias in AI applications.  Processing power and 

resource intensity are also important considerations, 

particularly for deep learning models.  These models 

necessitate significant computational resources for 

both training and inference, which presents challenges 

for smaller pharmaceutical corporations and academic 
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research teams with restricted budgets.  Cloud-based 

AI services and cooperation with AI technology 

providers are used to minimize computing costs and 

improve accessibility. Furthermore, regulatory 

approval and validation are crucial steps for AI 

models in drug research.  Demonstrating the safety, 

effectiveness, and repeatability of AI-generated 

outcomes is critical for regulatory approval and 

developing trust in the pharmaceutical industry.  

Collaboration among regulatory bodies, 

pharmaceutical firms, and AI researchers is critical for 

developing validation protocols and standards. Cost 

concerns arise from the requirement for major early 

investments in technology, data collecting, and 

qualified workers.  Addressing these financial issues 

would necessitate a long-term strategy that includes 

investigating government incentives, strategic 

alliances, and joint funding approaches.    

Emergence of AI for Drug Discovery 

The Knowledge Deficit     

One of the most difficult issues that human 

investigators and AI systems encounter in drug 

development is managing vast amounts of diverse 

data of different quality.  The rapid development of 

data and processing capacity has been cited as 

justification for a fourth paradigm, often known as 

data-driven scientific discovery. For the "why" and 

"what if" sorts of questions, relevant, preferably 

credible data must be located, inferred when absent, 

and connected using evidence-based reasoning, as 

depicted by the "connect the dots" metaphor.  It is 

increasingly obvious that current drug discovery 

requires computer-based Artificial intelligence is 

defined as systems that can think intelligently and 

recognize patterns.  These AI systems must be able to 

weigh data elements and collect examples of patterns 

in order to determine confidence and rationale.  

Automated systems that digest large sets of data using 

named entity recognition are an essential component 

of public domain databases, such as DISEASES for 

gene-disease associations, STRING for protein-

protein interactions, and Open Targets and Pharos for 

complex disease-protein-drug annotations, to name a 

few examples.  Together with AI-based protein 

structure prediction algorithms like Alpha Fold and 

RoseTTAFold, these resources have the potential to 

speed AI4DD.   

Current e in Drug Discovery     

An in-depth scientometric analysis of AI4DD 

revealed a significant increase in publications, from 

49 in 2011 to 333 by 2020.  The number of AI-

powered drug discovery platforms is expected to 

expand in the near future.  The pharmaceutical and 

biotech businesses, which move AI-driven drug 

discovery into commercial application, regularly 

collaborate with academic institutions, which often 

lead the development of algorithms and procedures.  

Over the last two decades, AI and machine learning 

have gone from being peripheral technologies to 

playing a major role in drug discovery.  Today, we are 

closer than ever to accomplishing this long-awaited 

goal. 
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