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INTRODUCTION 

Glaucoma is a complex visual disorder characterized 

by an increase in intraocular pressure (IOP), which 

can eventually lead to progressive vision loss. [1] This 

condition is occurs by gradual degeneration of retinal 

cells and optic nerve fibers, leading to vision 

impairment. [2] A key characteristic of glaucoma is 

the gradual narrowing of peripheral vision, which 

distinguishes it from other visual disorders. In many 

cases, glaucoma remains asymptomatic until routine 

eye examinations reveal early signs. [3] Acute angle-

closure glaucoma, however, can manifest rapidly, 

resulting in a sudden and severe loss of vision, often 

accompanied by symptoms such as headache, nausea, 

vomiting, corneal swelling, and intense eye pain. 

Secondary glaucoma, on the other hand, is usually 

caused by an underlying eye injury or medical 

condition that increases intraocular pressure [4] There 

are several types including congenital, pigmentary, 

neovascular, exfoliative, traumatic, and uveitic 

variants. [5] While elevated IOP is commonly 

associated with glaucoma, some individuals may 

experience vision loss without significant IOP 

changes, a condition known as normal-tension 

glaucoma. The majority of glaucoma cases are 

diagnosed in individuals aged 40 and above, while 

congenital, developmental, and juvenile forms 

typically impact younger populations. [6] [7] 

Glaucoma management typically involves a 

combination of medication, laser therapy, or surgical 

intervention, all aimed at lowering intraocular 

pressure and slowing disease progression. Although 

these treatments cannot reverse existing optic nerve 

damage or restore lost visual fields, they can 

effectively reduce further deterioration. By actively 

treating affected individuals, healthcare providers 

strive to minimize vision loss and preserve quality of 

life. [8] 

Epidemiology: [9] 

In 2010, an estimated 2.1 million individuals, 

accounting for 6-5% of the 32.4 million blind people 

worldwide, were blind due to glaucoma. This 
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condition, primarily affecting older adults, displayed 

a lower prevalence in younger regions but was more 

commonly observed in high-income areas with aging 

populations. Among individuals aged 40 to 80 years, 

the global prevalence of glaucoma was approximately 

3-5%. Specifically, primary open-angle glaucoma 

affected around 3.1% of this age group, making it 

nearly six times more common than primary angle-

closure glaucoma, which had a prevalence of 

approximately 0.5%.  Demographically, individuals 

of African descent were more likely to develop 

primary open-angle glaucoma compared to those of 

European ancestry, with an odds ratio of 1.36. Gender 

also played a role, with men having a higher 

likelihood (OR 2.80) of developing the condition 

compared to women. Additionally, bilateral blindness 

caused by glaucoma was observed more frequently in 

individuals with primary angle-closure glaucoma than 

those with open-angle glaucoma, suggesting a 

potentially worse prognosis for the former. 

What is Glaucoma: [10] [11][12][13][14] 

Glaucoma is a chronic, progressive eye disease 

characterized by damage to the optic nerve, usually 

caused by increased intraocular pressure (IOP). This 

damage leads to gradual loss of peripheral vision, and 

if left untreated, it can result in permanent blindness. 

Glaucoma is often called the "silent thief of sight" 

because it typically develops without noticeable 

symptoms until advanced stages. Early detection and 

treatment are crucial to prevent vision loss. 

Fig .1.1: Symptoms of glaucoma 
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Fig. 1.2: Development of glaucoma 

Types and Mechanism of Glaucoma: 

Fig. 1.3: Mechanism of glaucoma 
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Table 1.1: Types of glaucoma with its pathophysiology 

Type of Glaucoma Mechanism Pathophysiology Result 

Primary Open-

Angle Glaucoma 

(POAG) 

Gradual blockage of 

trabecular meshwork 

drainage 

Increased resistance to aqueous 

humor outflow through 

trabecular meshwork 

Increased IOP → 

Optic nerve damage 

Primary Angle-

Closure Glaucoma 

(PACG) 

Narrow or closed 

anterior chamber angle 

prevents aqueous 

humor drainage 

Pupillary block → Iris bows 

forward → Closes angle → 

Sudden rise in IOP 

Acute IOP spike → 

Severe optic nerve 

damage 

Normal-Tension 

Glaucoma 

Optic nerve damage 

without elevated IOP 

Vascular dysregulation or 

increased optic nerve 

susceptibility 

Optic neuropathy 

despite normal IOP 

Secondary 

Glaucoma 

Due to other 

ocular/systemic 

conditions 

Causes: trauma, uveitis, steroid 

use, neovascularization → 

blocks trabecular meshwork or 

angle closure 

Variable increase in 

IOP → Glaucoma 

symptoms 

Congenital 

Glaucoma 

Developmental 

anomaly of anterior 

chamber angle 

improper formation of 

trabecular meshwork → 

Decreased outflow 

High IOP in infants 

→ Corneal 

enlargement 

Pigmentary 

Glaucoma 

Pigment dispersion 

from iris clogs 

trabecular meshwork 

Pigment granules block 

drainage pathway 

Increased IOP over 

time → Optic nerve 

damage 

Glaucoma: Cause and Effect: [15-22] 
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Fig. 1.4: Difference between normal angle and closed angle glaucoma 
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Treatment of Glaucoma: 

Treatment options for glaucoma aim to lower 

intraocular pressure (IOP) to prevent optic nerve 

damage. Prostaglandin analogs such as latanoprost are 

commonly used as first-line agents; they increase the 

outflow of aqueous humor through the uveoscleral 

pathway. Alpha-adrenergic agonists like brimonidine 

work by both reducing aqueous humor production and 

enhancing its outflow. Carbonic anhydrase inhibitors, 

such as dorzolamide and acetazolamide, lower IOP by 

inhibiting the enzyme carbonic anhydrase, thereby 

reducing fluid formation in the eye. Additionally, 

cholinergic agents like pilocarpine promote aqueous 

humor drainage through the trabecular meshwork by 

contracting the ciliary muscle. Timolol maleate is a 

non-selective beta-adrenergic blocker used 

effectively in the management of glaucoma, 

particularly primary open-angle glaucoma and ocular 

hypertension. Its primary mechanism of action 

involves the reduction of intraocular pressure (IOP) 

by decreasing the production of aqueous humor in the 

eye. Timolol achieves this by blocking both β1- and 

β2-adrenergic receptors located in the non-pigmented 

epithelial cells of the ciliary body. Normally, 

stimulation of these receptors activates adenylate 

cyclase, leading to an increase in cyclic adenosine 

monophosphate (cAMP), which enhances aqueous 

humor secretion. By inhibiting beta receptor activity, 

timolol reduces cAMP levels, thereby suppressing 

aqueous humor formation. Importantly, timolol does 

not significantly affect aqueous humor outflow, 

distinguishing it from other classes of antiglaucoma 

drugs like prostaglandin analogs. The result is a 

significant reduction in intraocular pressure, typically 

observed within 30 minutes of administration, with 

peak effects around 1–2 hours and lasting up to 24 

hours. This pressure-lowering action helps prevent 

further damage to the optic nerve, which is crucial in 

managing glaucoma and preserving vision. However, 

since timolol can be systemically absorbed, it may 

cause side effects such as bradycardia, hypotension, 

or bronchospasm, especially in patients with asthma, 

cardiac conditions. 

Table.1.2: Drugs used for glaucoma 
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Nanocarriers for ocular delivery: [26-34] 

Benefits compared to conventional drug delivery: 

• Nanoscale size 

• Controlled and sustained drug release 

• Enhanced bioavailability and absorption in eye 

therapies 

• Biocompatible, biodegradable, and non-

immunogenic 

Table. 1.3: Nanocarriers for ocular delivery 

System Structure Size Range Advantages Applications 

Liposomes Phospholipid 

bilayers enclosing 

aqueous core 

0.08–10 µm 

(SUV: 10–100 

nm, LUV: 

100–300 nm) 

Biocompatible, 

encapsulates both 

hydrophilic/lipophilic 

drugs 

Front & back of 

the eye drug 

delivery 

Niosomes Bilayered vesicles Variable 

(Discosomes: 

10–14 µm) 

Chemically stable, low 

toxicity, easy storage 

Ophthalmic drug 

delivery 

Nanomicelles Self-assembled 

Nano systems 

Nanometer 

range 

Enhances solubility, 

prolongs ocular 

retention, increases BA 

Clear aqueous 

formulations 

Microemulsion Isotropic oil/water 

systems 

10–100 nm 

(typically) 

High stability, improved 

solubility & permeability 

Timolol, 

Sirolimus, 

Chloramphenicol 

Hydrogels Cross-linked 

polymer networks 

Swellable 

matrices 

Sustained release, high 

ocular compatibility 

Mucoadhesive 

ocular delivery 

Nanoparticles Solid colloidal 

carriers 

10–1000 nm High drug loading, 

multiple routes, stability 

Topical, ocular, 

systemic 

Lipid 

Nanoparticles 

(LNPs) 

Solid lipid core 

systems 

50–1000 nm Stable, controlled 

release, better than 

liposomes & emulsions 

Advanced ocular 

& systemic 

delivery 

 

Fig. 1.5: Nanocarriers for ocular delivery 
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Nanostructured lipid carrier: [35, 36] 

The dual complex of solid or liquid lipids makes up 

NLC, the second generation of LNPs, which have a 

mean size between 10 and 500 nm. Solid-lipid and 

liquid-lipid should ideally be mixed at a ratio of 70:30 

to 99.9:0.1. They contain certain nanostructures that 

increase drug loading and tighten the medication's 

internal binding, increasing shelf life. Patients may 

get NLCs intravenously, topically, orally, or through 

their eyes. Additionally, it helps us transport the 

medication to the intended location and reduce 

adverse effects and dosage. Because NLCs resemble 

bodily lipids, they are widely used in the health zone. 

The small size of the lipid particle ensures close 

exposure to the stratum corneum, enabling medication 

administration to the skin or mucous membranes.  

In order to get around the drawbacks of first-pass 

metabolism, low bioavailability, and low solubility, 

NLCs have been created.  

Advantages of Nanostructured Lipid Carriers 

(NLCs): [37] 

• Increased solubility of drugs in aqueous 

environments 

• Superior physical stability and durability 

• Simple production process with ease of scaling up 

for industrial manufacturing 

• High encapsulation efficiency for both 

hydrophilic and hydrophobic compounds 

• Controlled and uniform particle size distribution 

• Efficient delivery vehicle, especially suited for 

hydrophobic drugs 

• Sustained and prolonged drug release profiles 

Limitations of NLCs  

NLC has some disadvantages despite its significant 

potential for targeted and chosen drug delivery, 

including: 

• Cytotoxic effects associated with the kind and 

concentration of intercellular substances; 

• Irritating effects of different surfactants  

• More research is required to fully utilize the 

applications and efficacy of gene delivery 

systems and peptide and protein medications.  

Structural type of NLCs: 

Fig. 1.6: Structure of NLC 

NLCs have three quite different characteristics from 

SLNs, despite their somewhat similar topologies. 

Depending on the content of the lipid blend and the 

different production techniques, several types of 

NLCs are created. To optimize the payload for active 

compounds and reduce compound ejection during 

storage, the basic idea is to impart a particular 

nanostructure to the lipid matrix. The following is a 

summary of the three types of NLCs: The 

specification of particular type of NLCs has beed 

described in Table  
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Table. 1.4: Features of types of NLCs 

Sr.No. NLC type Nature of matrix Comments 

1 Imperfect Imperfectly 

structured 

solid matrix 

Contains a mixture of spatially distinct lipids, 

creating imperfections in the crystal structure, 

resulting in high drug loading capacity 

2 Amorphous Structure less 

solid 

amorphous matrix 

Developed by blending solid lipids with specialized 

lipids like hydroxyoctacosenyl hydroxystearate, 

isopropyl myristate, or medium-chain triglycerides 

(e.g., Miglyol 812). This prevents drug expulsion 

and offers a moderate drug loading capacity 

3 Multiple Multiple oil in fat 

in water 

During cooling after homogenization, the drug’s 

solubility in the lipid phase reduces, leading to 

crystallization and stability concerns during storage 

Fig .1.7:  1) Imperfect NLC   2) Amorphous NLC  3) Multiple NLC 

Methods used for the fabrication of NLCs: 

Table 1.5: Method of preparation of NLC 

Energy Level Method Principle/Process Advantages Limitations 

High Energy High Pressure 

Homogenizati

on (HPH) 

Molten lipid + drug homogenized 

at high pressure (cold or hot 

technique). 

Solvent-free, 

scalable, fast 

process. 

Equipment cost, 

heat may degrade 

thermolabile drugs.  
High Shear 

Homogenizati

on 

Drug in molten lipid (10°C above 

melting point) + aqueous 

surfactant, homogenized at high 

speed. 

Simple method, 

creates 

microemulsions for 

further processing. 

Less control over 

particle size. 

Low Energy Micro-

emulsion 

Technique 

Mix molten lipid with 

surfactant/co-surfactant aqueous 

phase → transparent emulsion → 

cooled for NLC formation. 

Suitable for 

thermolabile drugs, 

no special 

equipment needed. 

Stability dependent 

on surfactant 

choice. 

 
Double 

Emulsification 

Forms o/w/o emulsions using 

solvent evaporation method; ideal 

for hydrophilic drugs. 

Good for water-

soluble drugs, useful 

for lipospheres. 

Larger particle size, 

less stable than 

SLNs.  
Phase-

Inversion 

Method 

Drug + lipid + surfactant heated 

above phase inversion temp → 

rapid cooling → phase reversal 

leads to nanoparticle formation. 

No organic solvent, 

low energy, eco-

friendly. 

Less stability, 

requires 

temperature 

cycling. 

Very Low/No 

Energy 

Emulsification

-Solvent 

Evaporation 

Lipid + drug in organic solvent 

→ dispersed in aqueous phase → 

sonication → solvent evaporation 

→ cooling to form NLCs. 

Simple, rapid 

technique. 

Requires organic 

solvents, extra 

purification steps. 

 
Emulsification

-Solvent 

Diffusion 

Lipid dissolved in partially water-

miscible solvent → emulsified in 

water → solvent diffuses and 

solidifies to form NLCs. 

Fine particle size, 

avoids high energy. 

Use of solvents, 

less eco-friendly. 
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Characterization and evaluation of the NLC [42, 

45]  

Evaluating nanostructures is essential for ensuring 

their quality and suitability for in vivo applications. 

Due to their small size, complex lipid composition, 

and dynamic behavior, NLCs present unique 

challenges in characterization. Key parameters for 

assessing NLC quality and stability include drug 

concentration, particle size, size distribution, zeta 

potential, surface charge, entrapment efficiency, and 

in vitro drug release. 

Table. 1.6: Characterization and evaluation of the NLC 

Parameter Method Key Insights 

Particle Size, 

PDI & Zeta 

Potential 

Measured via Dynamic Light 

Scattering (DLS). 

Indicates particle uniformity and stability. Zeta 

potential > ±30 mV suggests strong repulsion, 

reducing aggregation. 

Morphology TEM, SEM, and AFM imaging. Provides visual confirmation of shape, surface, and 

structural integrity. TEM is preferred, using stained, 

dried samples on copper grids. 

Entrapment 

Efficiency 

(EE%) 

NLCs are disrupted using 

solvents, and drug content is 

measured via UV-spectroscopy. 

EE (%) = (Total drug – Free drug) / Total drug × 

100. High EE is common with hydrophobic drugs 

due to lipid entrapment. [46,47] 

In Vitro Drug 

Release 

Typically done using dialysis 

method at 37°C with stirring; 

samples collected at intervals 

and analyzed by UV/HPLC. 

Reveals drug release profile over time. Free drug 

solution serves as control. 

Thermal 

Behavior 

(Crystallinity) 

Evaluated via Differential 

Scanning Calorimetry (DSC). 

Assesses melting points, crystallinity, and 

polymorphism; involves heating 10 mg sample 

under nitrogen with data analyzed using DSC 

software. [51,52,53] 

Crystal 

Structure 

Analysis 

X-ray Diffraction (XRD) of 

freeze-dried samples. 

Determines crystalline or amorphous nature by 

interpreting diffraction patterns from 20° to 80° (2θ 

range). [54,55] 

Drug Release 

Kinetics 

Analyzed through in vitro and 

controlled release studies. 

Affected by lipid type, surfactants, and drug 

positioning (core vs surface). Initial burst followed 

by sustained release is common. [56,57,58] 

Ex Vivo 

Corneal 

Permeation 

Delta diffusion cells with goat 

corneas and simulated tear fluid 

at 37°C. 

Measures permeation and retention. Drug is 

quantified using UV spectrophotometry, and flux is 

calculated from the slope of permeation curve. [71] 

Applications of NLC in ocular delivery: 

Creating a revolutionary delivery system that can 

effectively target the ocular tissue that is diseased, 

deliver high quantities of the treatment, and maintain 

the drug's effects with few to no side effects [59] 

Because of certain physiological and anatomical 

characteristics of the eyes, ocular medication 

administration has numerous disadvantages and is 

still difficult. The eyes are a sensitive, intricate organ 

with many barriers. These obstacles can be addressed 

by innovative drug delivery methods like SLNs and 

NLCs, which improve ocular bioavailability. Its 

capacity to encapsulate hydrophobic medications, 

protect unstable components, and alter release 

behavior are further benefits. For the past several 

decades, 61 SLN has been used for ocular 

administration. Numerous research employing NLC 

as an ocular delivery mechanism is now well-known. 

NLC has been used to deliver some medications, like 

ciprofloxacin or amphotericin B, into the eyes. 

[62,63,64] The numerous ocular disorders that can 

affect both the front and back of the eye make it 

difficult to manage ophthalmic disease effectively. To 

get the medication to the intended location, a variety 

of ocular administration techniques are employed, 

including topical, intraocular, periocular, and in 

conjunction with ocular devices. Nanotechnologies 
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were used to improve eye retention time, medication 

penetration, and ocular bioavailability while reducing 

duration of drug consumption and side effects. This 

method improved the drug's efficacy and 

demonstrated good biocompatibility, suggesting that 

it will be widely utilized to treat eye infections. [65] 

Recent Studies on NLCs: [66, 67, 68, 69] 

Table. 1.7: Recent Studies on NLCs 

Study Drug Lipid Components Method Key Findings 

Cavalli et al. Tobramycin Not specified Not specified six hours of continuous 

medication release as 

opposed to the shorter 

time frame of 

traditional eye drops. 

Attama et al. Diclofenac 

Sodium 

Lipid nanoparticles + 

Phospholipids High- 

High-pressure 

homogenization 

Enhancing ocular 

delivery, phospholipid 

coating increased 

corneal permeability. 

Araujo et al. Triamcinolone 

Acetonide 

Precirol ATO5 (solid 

lipid), Squalene 

(liquid lipid), Lutrol 

F68 (surfactant) 

High-pressure 

homogenization 

The drug is mainly 

trapped in an 

amorphous NLC 

matrix; the Draize test 

shows little eye harm. 

Zhang et al. Genistein Eudragit-modified 

NLC 

Melt 

emulsification 

enhanced ocular 

permeability, increased 

AUC by 1.22×, and 

Draize and cytotoxicity 

tests revealed no harm. 

E. 

Gonzalez-

Mira et al. 

Flurbiprofen Optimized lipid 

quantities 

High-pressure 

homogenization 

Long-term stability, 

controlled release, and 

lack of discomfort have 

all been verified. 

Other Applications [70,71] 

NLCs in chemotherapy for cancer:  

Numerous chemotherapeutic medications have been 

encapsulated or integrated into NLCs within the last 

two to three years, and their effects have been 

assessed both in vitro and in vivo. These research' 

findings have been demonstrated to enhance 

pharmacokinetics, decrease adverse effects, boost 

potency, and improve medication stability, making 

them useful tools for clinical settings. The use of 

NLCs for delivery can help to partially address some 

of the issues that are frequently encountered with 

antibodies, such as tissue toxicity, poor quality, and 

stability.  

NLC in peptide and protein delivery:  

 

Other carriers for the treatment of proteins, peptides, 

and antigens include lipid nanoparticles and lipid 

microparticles, such as NLC and SLN. Lipid products 

contain peptides that are presently being studied, 

including somatostatin, insulin, calcitonin, and 

cyclosporine A.  

NLC in CNS targeting: 

Pharmaceutical applications may benefit from NLC's 

modest size (less than 50 nm). Reticuloendothelial 

disorders tend to be considerably less harmful to small 

people. Additionally, NLCs can be utilized 

medicinally. NLC is a promising medication targeting 

system for the treatment of organ illnesses and can 

enhance a medicine's capacity to cross the blood-brain 

barrier. NLCs have superior efficiency, greater drug 
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loading, and less cytotoxicity than polymeric 

nanoparticles. 
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