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INTRODUCTION 

Precision medicine represents a transformative shift 

in healthcare, aiming to tailor treatment and 

prevention strategies to the unique biological makeup 

of each individual. This approach recognizes that 

diseases, particularly complex disorders such as 

cancer, autoimmune conditions, and metabolic 

syndromes, are not monolithic entities but rather 

heterogeneous processes shaped by genomic, 

molecular, environmental, and lifestyle factors. 

Central to the success of precision medicine is the 

ability to unravel this heterogeneity at multiple 

biological scales, a task increasingly enabled by 

multi-omics technologies.1 Multi-omics refers to the 

integrative analysis of diverse omics data types, 

including genomics, epigenomics, transcriptomics, 

proteomics, metabolomics, and others, to provide a 

comprehensive view of cellular and physiological 

processes. Each omics layer captures distinct 

dimensions of biological regulation: the genome 

provides the blueprint, the epigenome modulates gene 

accessibility, the transcriptome reflects dynamic gene 

activity, the proteome encodes functional effectors, 

and the metabolome represents the biochemical state 

of the cell. When combined, these layers offer 

synergistic insights into disease mechanisms, 

treatment response, and systems-level interactions 

that cannot be inferred from any single modality 

alone.2 Historically, the analysis of omics data has 

been siloed, with each layer investigated 

independently due to technological limitations, data 

incompatibility, and lack of integrative frameworks. 

Genomic studies have identified mutations linked to 

disease susceptibility and potential therapy targets, 
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while transcriptomics has revealed gene expression 

signatures associated with prognosis. However, such 

isolated analyses often failed to account for 

downstream regulatory events, post-translational 

modifications, and metabolic alterations that critically 

influence phenotype. The emergence of integrative 

bioinformatics tools, advances in sequencing and 

mass spectrometry, and the establishment of public 

consortia such as TCGA, CPTAC, and ICGC have 

collectively catalysed a shift toward truly multi-

dimensional analysis.3 In parallel, novel experimental 

technologies—most notably single-cell omics and 

spatial transcriptomics—have enabled the dissection 

of molecular heterogeneity at unprecedented 

resolution. These tools enable researchers to capture 

cell-type-specific and location-specific molecular 

profiles, revealing how the tumour 

microenvironment, immune landscape, and 

intercellular interactions influence treatment 

outcomes. Such insights are increasingly informing 

the design of adaptive therapies, combination 

regimens, and biomarker-driven clinical trials.4 This 

review aims to provide an in-depth synthesis of the 

current state and future directions of multi-omics in 

precision medicine. We begin by examining the 

biological contributions and limitations of individual 

omics layers, followed by a discussion of their 

interconnections through systems biology and trans-

omics approaches. Subsequent sections explore the 

landscape of computational integration strategies, AI-

driven predictive models, and case studies where 

multi-omics has informed clinical decision-making. 

Special emphasis is placed on single-cell and spatial 

technologies, the microbiome, and time-series omics, 

as well as the ethical, legal, and social dimensions of 

implementing these tools in real-world settings. By 

offering a holistic overview grounded in both 

mechanistic biology and translational science, this 

review underscores how multi-omics is poised to 

drive the next generation of predictive, preventative, 

and personalized healthcare. 

Figure 1. A comprehensive schematic illustrating the 

workflow of multi-omics research. Primary tissues 

and cells from humans and model organisms (mouse, 

zebrafish) are subjected to multi-omics profiling, 

including genomics, epigenomics, transcriptomics, 

proteomics, and metabolomics. These data are 

processed via bioinformatics pipelines and integrated 

through trans-omic models, leading to insights via 

network analysis, association studies, and biological 

validation. This integrative approach underpins 

precision medicine and systems-level biological 

discovery. 

1. Individual Omics Layers in Drug Response 

and Disease Stratification 



Manish Khairnar, Int. J. Sci. R. Tech., 2025 2(7), 162-186 |Review 

                 

              INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH AND TECHNOLOGY                                                              164 | P a g e  

Understanding the individual contributions of 

genomics, epigenomics, transcriptomics, proteomics, 

and metabolomics is fundamental to appreciating 

their collective power in precision medicine. Each 

omics layer provides a distinct but interconnected 

perspective on biological function, disease 

development, and therapeutic response. When 

analysed in isolation, these layers offer critical 

mechanistic insights, identify key biomarkers, and 

inform drug development strategies. This section 

explores the mechanistic role, clinical utility, and 

inherent limitations of each omics domain, with 

examples drawn from large-scale datasets, including 

TCGA, METABRIC, CCLE, and CPTAC. 

Genomics 

Genomics represents the foundational layer of 

molecular biology, detailing the DNA sequence and 

its variations across individuals. Germline variants 

influence an individual's susceptibility to disease and 

their pharmacogenomic response to treatment. For 

example, polymorphisms in genes like CYP2C19 and 

TPMT alter drug metabolism and toxicity profiles, 

influencing the efficacy of antiplatelet agents and 

thiopurines, respectively. Somatic mutations, on the 

other hand, are acquired alterations that drive tumour 

genesis and can predict therapeutic sensitivity or 

resistance. High-throughput whole-genome and 

whole-exome sequencing have facilitated the 

identification of actionable mutations such as EGFR 

in non-small cell lung cancer and BRCA1/2 in breast 

and ovarian cancers. These discoveries have led to the 

development of targeted therapies (e.g., tyrosine 

kinase inhibitors for EGFR mutations, PARP 

inhibitors for BRCA mutations), now standard in 

clinical oncology. Genome-wide association studies 

(GWAS) further contribute by identifying loci 

associated with disease risk and treatment response 

across populations. However, the genomic layer alone 

often fails to capture regulatory and environmental 

influences that mediate the functional impact of 

genetic alterations. Not all mutations are biologically 

meaningful (i.e., passenger vs. driver mutations), and 

the penetrance of many germline variants is context-

dependent. Thus, genomics provides necessary but 

insufficient information for a comprehensive 

understanding of complex phenotypes.5 

Epigenomics 

The epigenome encompasses heritable yet reversible 

modifications that regulate gene expression without 

altering the underlying DNA sequence. DNA 

methylation, histone modifications (e.g., acetylation 

and methylation), and chromatin remodeling 

collectively regulate transcriptional accessibility. 

Aberrant epigenetic regulation is a hallmark of cancer 

and other complex diseases, contributing to the 

silencing of tumour suppressors, the activation of 

oncogenes, and therapeutic resistance. DNA 

methylation profiling has identified hypermethylated 

promoters of genes such as MGMT, which predict 

response to alkylating agents in glioblastoma. 

Similarly, histone deacetylase inhibitors (HDACis) 

are being investigated as targeted therapies for 

epigenetically dysregulated tumours. Chromatin 

accessibility mapping using ATAC-seq reveals the 

dynamics of enhancers and transcription factor 

binding landscapes that influence gene expression 

programs during drug treatment. Despite these 

advances, epigenomic data are highly context-

specific, varying across different cell types, 

developmental stages, and environmental exposures. 

Furthermore, distinguishing causal epigenetic 

alterations from secondary effects remains a 

challenge. The integration of epigenomics with 

transcriptomics and chromatin topology (e.g., Hi-C) 

is crucial to elucidate functional regulatory networks.6 

Transcriptomics 

Transcriptomics captures the functional output of the 

genome by measuring RNA expression levels, 

including mRNA, long non-coding RNAs (lncRNAs), 

and microRNAs (miRNAs). Differential gene 

expression profiling has been used for a long time to 

classify disease subtypes and identify predictive 

biomarkers. For instance, the PAM50 gene signature 

in breast cancer, derived from microarray data in the 

METABRIC cohort, stratifies patients into intrinsic 

subtypes (e.g., Luminal A, HER2-enriched) with 

distinct prognoses and treatment implications. RNA 

sequencing (RNA-seq) has largely supplanted 

microarrays, offering greater sensitivity and dynamic 

range. Transcriptomics also enables the discovery of 

alternatively spliced isoforms, fusion transcripts, and 

non-coding RNA elements involved in drug 

resistance and cellular reprogramming. Long non-

coding RNAs (lncRNAs), such as HOTAIR, have 

been implicated in the metastatic progression and 
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chemoresistance of cancer, while specific 

microRNAs (e.g., miR-21) regulate apoptosis 

pathways and influence drug response. Nevertheless, 

RNA abundance does not always correlate with 

protein levels due to post-transcriptional and 

translational regulation. Moreover, bulk 

transcriptomic analyses can obscure cell-type-specific 

expression patterns, particularly in heterogeneous 

tissues like tumours. These limitations are now being 

addressed through the use of single-cell RNA-seq and 

spatial transcriptomics.7 

Proteomics 

Proteomics investigates the proteome—the entire 

complement of proteins expressed by a cell or tissue 

at a given time. Since proteins are the primary 

effectors of cellular function and direct drug targets, 

proteomic data are uniquely positioned to link 

genotype to phenotype. Techniques such as tandem 

mass spectrometry (MS/MS), reverse-phase protein 

arrays (RPPA), and data-independent acquisition 

(DIA) enable high-resolution proteome profiling. 

CPTAC has demonstrated the power of proteomics in 

complementing genomic data. In ovarian cancer, for 

example, proteomic subtypes revealed biological 

distinctions not apparent from transcriptomic analysis 

alone. Quantitative proteomics can measure protein 

abundance, post-translational modifications (PTMs), 

and complex formation—critical factors in signal 

transduction and drug response. Phosphoproteomics, 

in particular, has been used to map kinase signalling 

networks and predict sensitivity to kinase inhibitors. 

However, proteomic analyses are technically 

demanding, with challenges in reproducibility, 

coverage, and sample preparation. PTMs are often 

labile, and low-abundance proteins may escape 

detection. Moreover, protein activity is influenced by 

localization, conformation, and interactions, which 

are challenging to capture comprehensively.8 

Metabolomics 

Metabolomics provides a snapshot of metabolic 

activity by quantifying small-molecule metabolites in 

cells, tissues, or biofluids. As the downstream product 

of gene and protein function, the metabolome is a 

sensitive indicator of physiological and pathological 

states. Nuclear magnetic resonance (NMR) 

spectroscopy and mass spectrometry are the principal 

platforms for metabolomics. Cancer cells often 

exhibit altered metabolism (e.g., the Warburg effect), 

and metabolomic profiling can reveal dependencies 

that are exploitable for therapeutic purposes. For 

example, glutamine addiction in certain cancers has 

led to the development of glutaminase inhibitors. 

Metabolomics also plays a role in pharmacokinetics, 

providing insight into drug absorption, distribution, 

metabolism, and excretion (ADME). Additionally, 

metabolite signatures can serve as biomarkers for 

early detection, prognosis, or treatment monitoring. 

However, metabolomics faces several hurdles, 

including sample variability, challenges in compound 

identification, and quantification difficulties. The 

dynamic and transient nature of the metabolome 

requires rigorous standardization and careful 

experimental design. Integration with upstream omics 

layers is crucial for interpreting metabolic phenotypes 

within a regulatory context. Each omics layer 

provides indispensable insights into the biological 

underpinnings of disease and therapeutic response. 

Genomics identifies the blueprint; epigenomics and 

transcriptomics define regulatory landscapes; 

proteomics captures functional execution; and 

metabolomics reflects phenotypic consequences. 

When examined individually, these modalities have 

advanced our understanding of complex diseases and 

informed the development of targeted therapies. 

However, their limitations underscore the necessity of 

integrative approaches. The subsequent sections of 

this review will explore how these omics layers 

converge in multi-dimensional models to reveal 

emergent biological phenomena, guide clinical 

decisions, and ultimately enhance the precision and 

personalization of medicine.1 

2. Interconnection of Multi-Omics Layers: From 

Siloed to Systems Biology 

The transition from isolated omics investigations to 

integrated, systems-level analyses marks a pivotal 

transformation in biomedical research. While 

individual omics layers—genomics, epigenomics, 

transcriptomics, proteomics, and metabolomics—

offer valuable insights in isolation, it is their 

interconnection that reveals the full complexity of 

biological regulation and disease pathogenesis. Multi-

omics integration not only captures molecular 

diversity across multiple biological scales but also 

unveils the causal and regulatory interplay among 
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layers that shape phenotypic outcomes. This systems 

biology approach lies at the heart of precision 

medicine. 

Regulatory Cascades Across Omics Layers 

Molecular processes within cells operate as 

interconnected networks, where changes at one omic 

level ripple through other layers. For example, 

genomic mutations can reshape the epigenetic 

landscape by altering DNA-binding motifs for 

chromatin remodelers or transcription factors. This, in 

turn, can influence chromatin accessibility and 

histone modifications, ultimately modulating gene 

expression and downstream protein abundance. A 

canonical example is the effect of TP53 mutations on 

cellular transcriptional programs. Mutations in this 

key tumour suppressor gene disrupt DNA-binding 

capacity and transcriptional regulation, leading to 

widespread epigenetic and transcriptomic 

dysregulation. Similarly, mutations in chromatin 

regulators, such as ARID1A or EZH2, alter histone 

methylation patterns, which in turn affect the 

expression of target genes involved in cell cycle 

regulation and apoptosis. Conversely, epigenetic 

modifications can themselves influence the 

transcriptome. DNA hypermethylation of promoter 

CpG islands typically silences gene expression, as 

observed in the suppression of the MGMT gene in 

glioblastoma, which predicts enhanced response to 

temozolomide chemotherapy. Histone deacetylation 

also compacts chromatin structure, restricting access 

to transcriptional machinery and reducing mRNA 

synthesis. These regulatory events translate into 

reduced protein levels, impacting signalling pathways 

and therapeutic sensitivity.9 Proteomic outcomes are 

further modulated by transcript stability, translation 

efficiency, and post-translational modifications 

(PTMs) - for instance, phosphorylation and 

ubiquitination control protein activation, localization, 

and degradation. A decrease in mRNA levels may not 

result in reduced protein abundance if compensatory 

translational mechanisms are present. Thus, 

proteomic data can reveal discrepancies between gene 

expression and functional output, providing critical 

context for evaluating treatment responses. At the 

metabolic level, feedback from cellular metabolites 

influences both transcription and epigenetic 

regulation. Acetyl-CoA, a central metabolite in 

energy metabolism, serves as a substrate for histone 

acetyltransferases (HATs), linking metabolic flux to 

chromatin state. Fluctuations in acetyl-CoA 

concentrations under hypoxia or nutrient stress can 

alter histone acetylation and transcriptional activation 

of metabolic genes. Similarly, S-adenosylmethionine 

(SAM), the methyl donor for DNA and histone 

methylation, connects one-carbon metabolism to gene 

silencing.10 

Trans-Omics Relationships: Illustrative Examples 

Trans-omics refers to the vertical propagation of 

regulatory signals across molecular layers. One of the 

most striking examples involves mutations in IDH1 

and IDH2 in gliomas. These mutations lead to the 

production of 2-hydroxyglutarate (2-HG), an 

oncometabolite that inhibits the activity of DNA and 

histone demethylases. The result is widespread 

epigenetic reprogramming, characterized by a CpG 

island methylator phenotype (G-CIMP), which 

silences tumour suppressor genes and alters 

transcriptional networks. This trans-omic cascade 

links a single genomic mutation to epigenomic, 

transcriptomic, and phenotypic alterations in tumour 

behaviour. Another case involves breast cancer 

subtyping. Integrative analysis from the METABRIC 

and TCGA cohorts has shown that distinct genomic 

alterations (e.g., PIK3CA, TP53 mutations) 

correspond with epigenetic and transcriptomic 

signatures that define intrinsic subtypes (Luminal 

A/B, HER2-enriched, Basal-like). These subtypes 

exhibit differential protein expression patterns and 

metabolic dependencies, guiding subtype-specific 

therapeutic interventions.11 

Data-Driven Approaches for Revealing Multi-

Omic Structures 

The complexity of cross-omic relationships 

necessitates robust computational frameworks that 

can capture latent structures and correlations across 

datasets. Several integrative models have been 

developed to address this need: 

• MOFA+ (Multi-Omics Factor Analysis Plus): 

An unsupervised learning framework that 

decomposes multi-omics datasets into latent 

factors. These factors capture shared and 

modality-specific sources of variation, facilitating 

biological interpretation and downstream 
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predictive modelling. MOFA+ has been 

successfully applied to cancer, immunology, and 

neurodegenerative diseases.6,12 

• iClusterPlus: A probabilistic model that 

performs joint latent variable analysis for 

clustering and subtype discovery. It integrates 

diverse omics types and identifies molecular 

subtypes with coordinated alterations across 

layers.13 

• DIABLO (Data Integration Analysis for 

Biomarker discovery using Latent 

components): Part of the mixOmics suite, 

DIABLO performs supervised integration to 

identify multi-omics signatures associated with 

outcomes such as treatment response or 

survival.14 

• SNF (Similarity Network Fusion): Constructs 

similarity graphs for each omics type and fuses 

them into a consensus network, capturing patient 

similarities across modalities. SNF has been used 

to stratify tumours and predict drug sensitivity 

more accurately than single-omics methods.15 

These models enable researchers to uncover trans-

omic modules, pathway perturbations, and predictive 

signatures that are otherwise invisible to single-layer 

analyses. For example, multi-omics factor models 

have identified latent dimensions that correspond to 

immune infiltration, stromal activity, and metabolic 

states in tumours, all of which influence drug 

response.

Figure 2. Practical Integration of Multi-Omics Layers 

Using Machine Learning and Bioinformatics. 

(Schematic representation of a time- and dose-

dependent experimental setup using HepG2 cells 

exposed to varying caffeine concentrations. 

Transcriptomic, proteomic, and Phosphoproteomics 
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data are collected and processed using machine 

learning (PCA, MOFA), statistical analysis 

(differential expression), and bioinformatics pipelines 

(pathway analysis, protein-protein interactions, and 

kinase activity inference). This workflow 

demonstrates how multi-omics integration enables 

mechanistic interpretation and discovery of regulatory 

cascades across molecular layers in a trans-omic 

framework.) 

Clinical and Biological Implications of Omics 

Interconnectivity 

The interdependence of omics layers has profound 

implications for clinical diagnostics and therapeutic 

strategies. Single mutations or epigenetic events can 

have cascading effects across molecular networks, 

emphasizing the importance of comprehensive 

profiling. Multi-omics integration facilitates the 

identification of causal drivers rather than mere 

correlates, enhancing the precision of biomarker 

discovery. Additionally, it helps resolve discrepancies 

observed in clinical practice. For instance, patients 

with similar genomic profiles may exhibit vastly 

different responses to therapy due to downstream 

regulatory differences. By accounting for multi-

layered variation, clinicians can refine treatment 

selection, monitor dynamic responses, and anticipate 

resistance mechanisms. Emerging applications in 

immunotherapy further illustrate the value of omics 

interconnectivity. Integrative analyses combining 

genomics, transcriptomics, and epigenomics have 

identified neoantigen landscapes, immune escape 

mechanisms, and response signatures to checkpoint 

inhibitors. These insights are now being translated 

into personalized immunotherapeutic regimens and 

adaptive trial designs. Multi-omics integration 

represents a fundamental advancement in our 

understanding of biological systems and disease 

mechanisms. The regulatory cascades and feedback 

loops spanning genomics, epigenomics, 

transcriptomics, proteomics, and metabolomics are 

essential for decoding cellular behaviour and 

therapeutic outcomes. Through data-driven models 

like MOFA+, iCluster, and DIABLO, researchers are 

unravelling these complex interdependencies and 

translating them into actionable insights. By 

embracing the interconnected nature of molecular 

biology, precision medicine can evolve beyond static 

biomarkers toward dynamic, systems-level predictors 

of health and disease.1,2 

3. Single-Cell Multi-Omics and Cellular 

Heterogeneity 

Cellular heterogeneity represents a significant 

challenge and opportunity in precision medicine. 

While bulk omics approaches average signals across 

populations of cells, masking rare and functionally 

important subpopulations, single-cell multi-omics 

technologies provide a high-resolution window into 

the diversity of cell states, lineages, and responses to 

therapy. This capability is particularly crucial in 

understanding cancer evolution, immune dynamics, 

and mechanisms of drug resistance. Recent advances 

have enabled the simultaneous measurement of 

multiple molecular modalities within individual cells, 

including gene expression, chromatin accessibility, 

protein abundance, and epigenetic modifications. By 

dissecting the interdependent layers of cellular 

regulation at single-cell resolution, researchers can 

capture emergent properties such as transcriptional 

noise, lineage plasticity, and microenvironmental 

adaptation that are pivotal to therapeutic response.16 

Single-Cell Technologies and Modalities 

Several landmark single-cell technologies now 

underpin this field: 

• scRNA-seq (Single-cell RNA sequencing): 

Captures mRNA expression at single-cell 

resolution. Key to identifying cell types, 

differentiation trajectories, and transcriptional 

heterogeneity. 

• scATAC-seq (Single-cell Assay for 

Transposase-Accessible Chromatin): Maps 

chromatin accessibility to identify regulatory 

elements, enhancers, and transcription factor 

binding sites. 

• CITE-seq (Cellular Indexing of 

Transcriptomes and Epitopes by sequencing): 

Combines scRNA-seq with protein quantification 

using oligonucleotide-labelled antibodies, 

allowing joint measurement of transcriptome and 

surface proteome. 
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• REAP-seq (RNA Expression and Protein 

sequencing): Similar to CITE-seq, with 

variations in capture and barcode chemistry. 

• SHARE-seq (Simultaneous High-throughput 

ATAC and RNA Expression): Enables parallel 

profiling of chromatin accessibility and gene 

expression in the same cell, linking cis-regulatory 

elements with transcriptional output. 

These technologies are complemented by 

computational frameworks such as Seurat, Harmony, 

ArchR, and TotalVI, which perform dimensionality 

reduction, data integration, batch correction, and 

multimodal inference to extract biologically 

meaningful patterns.17 

Capturing Rare Subclones and Drug Resistance 

One of the most transformative applications of single-

cell multi-omics is the detection of rare subclones that 

drive therapy resistance. In acute myeloid leukaemia 

(AML), for example, pre-treatment scRNA-seq 

profiling revealed minor subpopulations with 

transcriptional signatures associated with resistance, 

which expanded upon exposure to chemotherapy. 

These subclones expressed genes involved in 

quiescence, anti-apoptotic pathways, and drug efflux 

pumps—mechanisms not detectable in bulk 

transcriptomic data. Similarly, in breast and prostate 

cancers, rare stem-like or mesenchymal 

subpopulations identified by scRNA-seq exhibit 

intrinsic resistance to endocrine therapy or androgen 

deprivation, respectively. These cells often evade 

initial treatment but later seed relapse and 

metastasis.18,19 

Cell Fate Plasticity and Adaptive Resistance 

Single-cell studies have shown that drug exposure can 

induce plastic changes in cell state, allowing tumour 

cells to transition between epithelial and 

mesenchymal phenotypes, or between proliferative 

and dormant states. These transitions are 

accompanied by changes in gene regulatory networks 

and chromatin structure, as revealed by the integration 

of scRNA-seq and scATAC-seq. For instance, in 

melanoma treated with BRAF inhibitors, a subset of 

tumour cells enters a slow-cycling, dedifferentiated 

state characterized by elevated AXL expression and 

chromatin remodeling. These adaptive states are 

transient and reversible, challenging traditional 

notions of fixed genetic resistance.20 

Immune Exhaustion and Immunotherapy 

Response 

In immuno-oncology, single-cell technologies have 

been instrumental in dissecting the heterogeneity of 

tumour-infiltrating lymphocytes (TILs) and their role 

in response to immune checkpoint inhibitors. scRNA-

seq of T cells from melanoma patients has identified 

distinct subsets, including exhausted CD8+ T cells 

expressing PD-1, TIM-3, and LAG-3, which exhibit 

reduced effector function. CITE-seq and TotalVI have 

further refined this characterization by integrating 

surface marker expression with transcriptomic states, 

revealing intermediate exhaustion phenotypes that 

correlate with clinical outcomes. These insights are 

now guiding the development of combination 

therapies that target co-inhibitory receptors or 

reinvigorate dysfunctional T cells.21 

Single-Cell Profiling of CAR-T Therapy 

CAR-T cell therapy has demonstrated remarkable 

efficacy in hematologic malignancies, yet responses 

in solid tumours remain limited. Single-cell multi-

omics has helped uncover barriers to efficacy, such as 

T cell exhaustion, antigen loss, and suppressive 

tumour microenvironments. In a landmark study, 

single-cell profiling of CAR-T cells infused into 

patients with glioblastoma revealed heterogeneous 

activation states and clonal expansion patterns. Some 

CAR-T subsets exhibited high expression of 

exhaustion markers and cytokines, while others-

maintained memory-like phenotypes. scATAC-seq of 

the same cells revealed regulatory elements 

associated with effector function and persistence, 

providing targets for the design of next-generation 

CARs.22 

Integration and Trajectory Inference 

Advanced computational tools enable the 

reconstruction of dynamic cell-state transitions over 

time. Tools like Monocle, Slingshot, and RNA 

velocity infer lineage trajectories and predict future 

states of individual cells based on RNA splicing 

dynamics. When coupled with chromatin data from 
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SHARE-seq or ArchR, these trajectories can be linked 

to the dynamics of regulatory elements, thereby 

enhancing mechanistic understanding. For example, 

in triple-negative breast cancer models, trajectory 

inference has shown how treatment-induced 

chromatin changes precede transcriptional 

reprogramming that culminates in resistant 

phenotypes. Such insights suggest that early 

chromatin remodeling events could serve as 

predictive biomarkers of resistance.23 

Challenges and Future Directions 

Despite their power, single-cell multi-omics 

technologies face several challenges. Technical noise, 

dropout events, and limited sensitivity can complicate 

the interpretation of data. High dimensionality 

necessitates sophisticated statistical models and large 

sample sizes to draw robust conclusions. Moreover, 

integrating modalities from the same cell (e.g., 

mRNA and chromatin) demands careful experimental 

and computational design. Recent innovations are 

addressing these barriers. Spatially-resolved single-

cell methods are emerging, allowing researchers to 

map cellular interactions and niches within intact 

tissues. Lineage tracing and perturbation-based 

single-cell studies (e.g., CRISPR-Cas9 combined 

with single-cell RNA sequencing, scRNA-seq) are 

also expanding the functional interrogation of cellular 

heterogeneity.24 Single-cell multi-omics represents a 

cornerstone of next-generation precision medicine. 

By resolving the cellular mosaic within tissues, these 

technologies reveal rare drug-resistant clones, 

dynamic cell state transitions, and immune 

phenotypes that dictate therapy outcomes. As 

analytical methods and multimodal assays continue to 

evolve, single-cell data will not only elucidate 

biological mechanisms but also inform clinical 

decisions in real time. Integrating these insights into 

multi-omics frameworks holds transformative 

potential for overcoming resistance, designing 

adaptive therapies, and advancing truly individualized 

care.25 

Figure 3. Circular representation of multi-omics 

platforms utilised in 3D in vitro tumour systems such 

as patient-derived organoids (PDOs) and xenografts 

(PDXs). The inner ring categorises major omics 

domains: genomics, transcriptomics, epigenomics, 

proteomics, metabolomics, and lipidomics. The 

middle ring lists specific technologies employed (e.g., 

scRNA-seq, mass spectrometry, HPLC-MS/MS), 

while the outer ring describes their functional 

applications—ranging from mutation analysis and 

immune checkpoint evaluation to therapeutic 

response and drug screening. This framework 

underpins precision oncology through physiologically 

relevant tumour modelling. 
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4. Spatial Omics: The Role of Microenvironment 

in Therapy Response 

Spatial omics is redefining our understanding of tissue 

organization and its impact on therapeutic response. 

By preserving the spatial context of gene and protein 

expression within tissue architecture, spatial 

transcriptomics and proteomics allow researchers to 

study the tumour microenvironment (TME) with 

unprecedented resolution. These technologies are 

particularly valuable in heterogeneous diseases such 

as cancer, where the physical arrangement of 

malignant and non-malignant cells, along with factors 

like hypoxia, stromal interactions, and immune 

infiltration, profoundly impact treatment outcomes.26 

Spatial Omics Technologies 

Several cutting-edge platforms have emerged to 

measure spatially resolved molecular data: 

• 10x Genomics Visium: Captures whole-

transcriptome spatial gene expression by 

embedding tissue sections on barcoded slides. 

• Nano String GeoMx Digital Spatial Profiler 

(DSP): Quantifies transcripts and proteins in 

user-defined regions of interest (ROIs) using 

barcoded probes and oligo-tagged antibodies. 

• CODEX (CO-Detection by indexing): Enables 

multiplexed spatial proteomics via iterative 

rounds of antibody staining and imaging, 

revealing the spatial distribution of dozens to 

hundreds of proteins. 

These platforms provide high-dimensional molecular 

maps that reveal not only the composition of the TME 

but also the spatial relationships that govern cell-cell 

communication and response to therapy. 

Spatial Context and Drug Response 

Spatial omics has uncovered critical 

microenvironmental features that influence drug 

efficacy: 

• Hypoxic Tumour Zones: Hypoxia, a common 

feature of poorly vascularized tumour regions, 

drives resistance to chemotherapy, radiotherapy, 

and immunotherapy. Spatial transcriptomics has 

identified hypoxia-inducible gene signatures that 

cluster in specific tumour regions and correlate 

with aggressive phenotypes and immune 

exclusion. 

• Immune Desert vs. Inflamed Phenotypes: 

Tumours exhibit a spectrum of immune 

microenvironments. "Inflamed" tumours contain 

abundant T cell infiltration and often respond to 

immune checkpoint inhibitors (ICIs), whereas 

"immune deserts" lack effector immune cells, 

indicating a non-permissive or actively 

suppressive TME. Spatial profiling can 

distinguish these states, revealing that even within 

a single tumour, inflamed and non-inflamed 

regions may coexist, affecting treatment response 

heterogeneity. 

• Stromal Barriers: Cancer-associated fibroblasts 

(CAFs) and extracellular matrix components can 

spatially restrict the penetration of drugs and 

immune cells. Spatial omics has shown that high-

density stromal regions correlate with poor 

infiltration of cytotoxic T cells and reduced 

efficacy of ICIs and adoptive cell therapies.27,28 

Case Study: Spatial Omics in Melanoma 

Immunotherapy 

A landmark 2021 study by Ji et al. applied spatial 

transcriptomics and single-cell RNA-seq to tumour 

biopsies from melanoma patients treated with anti-

PD-1 therapy. The study revealed distinct spatial 

niches characterized by immune activation, 

suppression, or exclusion. In responders, tumour 

regions showed colocalization of cytotoxic CD8+ T 

cells with tumour cells and expression of IFN-γ-

related genes, forming "immune hubs." In contrast, 

non-responders exhibited spatial segregation between 

tumour and immune cells, with high expression of 

immune checkpoint molecules (e.g., PD-L1, LAG3) 

in stromal compartments. These findings 

demonstrated that spatial proximity between T cells 

and tumour cells—not just overall T cell presence—

was critical for therapeutic efficacy.29 

Integration with Single-Cell Omics 

Spatial omics achieves its full potential when 

integrated with single-cell technologies. For instance, 
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clustering results from scRNA-seq can be spatially 

mapped back to tissue sections, allowing for the high-

resolution identification of cell types and states within 

their anatomical context. This integration allows 

researchers to: 

• Track cell-cell interactions such as ligand-

receptor signalling (e.g., CXCL9-CXCR3) 

between tumour and immune cells. 

• Reconstruct tumour-immune dynamics under 

therapy pressure, including changes in spatial 

organization of Tregs, macrophages, and effector 

T cells. 

• Visualize clonal expansion and migration 

patterns of immune cells following checkpoint 

blockade. 

Tools like Seurat v4, SpaOTsc, and STUtility 

facilitate this cross-modal mapping, combining gene 

expression signatures from single cells with spatial 

coordinates from tissue slices.30,31 

Clinical Implications and Future Directions 

The ability to dissect the spatial architecture of tissues 

is transforming how we evaluate therapeutic response 

and resistance. Spatial biomarkers—such as immune 

cell proximity scores, stromal exclusion indices, or 

hypoxia gradients—are being developed to guide 

patient stratification and therapy selection. Clinical 

trials are increasingly incorporating spatial omics to 

refine inclusion criteria and identify predictive 

markers of response to treatment. Looking ahead, 

next-generation platforms aim to achieve subcellular 

resolution, integrate multi-omics layers (e.g., 

epigenome, metabolome), and enable real-time spatial 

analysis in clinical workflows. As spatial omics 

becomes more accessible, it is poised to become a 

cornerstone of personalized oncology and a critical 

component of systems-level precision medicine.32 

5. Computational and AI Tools for Multi-Omics 

Integration 

The integration of multi-omics data poses a 

formidable computational challenge due to the 

heterogeneity, dimensionality, and noise inherent in 

these diverse biological layers. To extract actionable 

insights from multi-omics datasets, researchers have 

developed a range of computational strategies, 

spanning statistical frameworks to artificial 

intelligence (AI) and deep learning models. These 

methods aim to capture shared and unique patterns 

across omics types, improve phenotype prediction, 

and enhance biological interpretability. This section 

provides a comprehensive overview of computational 

paradigms and AI-driven tools for multi-omics 

integration.33,34 

Integration Paradigms: Early, Intermediate, and 

Late Fusion 

Three major paradigms underpin the computational 

integration of multi-omics data: 

• Early Integration (Concatenation-Based): 

Omics features from different modalities are 

merged into a single matrix before analysis. This 

approach is straightforward but suffers from data 

imbalance, scale disparity, and potential 

overfitting due to increased dimensionality. It 

often requires rigorous preprocessing and 

normalization. 

• Intermediate Integration (Joint Modelling): 

Separate omics layers are analysed concurrently 

through shared latent representations or joint 

factor models. This method captures cross-modal 

correlations while preserving modality-specific 

variance. Tools like MOFA and iCluster 

exemplify this approach. 

• Late Integration (Decision-Level Fusion): 

Independent models are trained for each omics 

type, and their outputs (e.g., predictions or latent 

features) are combined in a second-stage model. 

This modular design allows flexibility but may 

overlook complex inter-layer interactions.35 

The choice of paradigm depends on the biological 

question, data type compatibility, and interpretability 

requirements. 
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Figure 4. The brief process of integrating multi-omics 

data with machine learning and deep learning. (A) 

The process of data integration by machine learning. 

The concatenation-based integrated approach pipeline 

includes raw data from individual omics with 

corresponding phenotypic information, the data from 

the individual omics are then concatenated to form a 

single large matrix of multi-omics data, and finally, 

supervised or unsupervised methods are used for joint 

matrix analysis. The model-based integration method 

flow contains the establishment of the original data of 

various omics and the corresponding phenotypic 

information, develop individual models for each 

omics and then integrate them into a joint model, and 

finally, to analyse the joint model. And 

transformation-based method starts with raw data of 

individual omics and corresponding phenotypic 

information, followed by developing individual 

transformations (in the form of graphs or kernel 

relations) for each omics, and then integrating it into 

joint transformations, and finally, analyzing it. The 

letters of PGPM are represented as phenotypic data 

(P), genomic data (G), proteomic data (P), and 

metabolomic data (M) in sequence. (B) The brief 

concept of data integration is achieved by deep 

learning. First, preprocess and clean the multi-omics 

data, and then use conventional feature selection 

techniques or feature reduction methods for feature 

selection or dimensionality reduction to reduce the 

number of multi-omics variables. Next, multiple 

omics variables are concatenated into one large data 

set for data integration. Finally, further feature 

selection or reduction techniques are applied to reduce 

the variables, and the integrated data are analysed 

using classification, regression, and clustering. 

Dimensionality Reduction and Latent Factor 

Models 

Given the high dimensionality of omics data, 

dimensionality reduction is crucial for mitigating 
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overfitting, enhancing computational efficiency, and 

uncovering latent biological structures. 

• MOFA (Multi-Omics Factor Analysis): An 

unsupervised method that decomposes multi-

omics datasets into a set of latent factors capturing 

shared and modality-specific variation. MOFA+ 

extends this approach to handle missing data and 

time-series data, enabling dynamic modelling of 

disease progression and treatment response. 

• DIABLO (Data Integration Analysis for 

Biomarker discovery using Latent 

components): Part of the mixOmics R package, 

DIABLO performs supervised integration using 

latent components to identify multi-omics 

biomarkers predictive of phenotypes (e.g., 

treatment outcomes). It excels in classification 

tasks and supports sparse feature selection. 

• mixOmics: A suite of multivariate methods for 

exploring relationships between omics datasets. It 

supports various integration methods, including 

PLS, CCA, and sPLS-DA for dimension 

reduction and classification. 

These tools are widely used in multi-omics studies of 

cancer, metabolic diseases, and neurodegeneration, 

revealing clinically relevant molecular signatures.14,36 

Network-Based Integration Methods 

Network-based approaches leverage biological 

interactions to contextualize omics features and 

improve interpretability. 

• Similarity Network Fusion (SNF): Constructs 

similarity graphs for each omics dataset and fuses 

them into a unified network that preserves both 

shared and unique sample similarities. SNF has 

been applied to patient stratification, revealing 

subtypes with distinct prognosis and drug 

responses. 

• NetDx: A network-based patient classification 

tool that builds similarity networks from 

individual omics layers and integrates them using 

machine learning. It enables explainable 

predictions by identifying which features (e.g., 

gene pathways or clinical variables) drive 

classification. 

These methods are especially powerful when paired 

with prior knowledge such as protein-protein 

interaction maps, signalling networks, and pathway 

databases, grounding computational predictions in 

biological context.37,38 

Deep Learning for Multi-Omics Integration 

Deep learning models can automatically learn 

complex, hierarchical representations from multi-

modal data, offering scalability and high predictive 

power. 

• Autoencoders: Neural network models that 

compress high-dimensional input into a latent 

space and reconstruct it. Variational autoencoders 

(VAEs) and multi-modal autoencoders are 

commonly used for integrating omics data. They 

enable unsupervised learning of latent features 

and data denoising. 

• Graph Neural Networks (GNNs): Encode 

structured biological knowledge by modelling 

omics data as graphs (e.g., gene-gene or cell-cell 

interactions). GNNs can capture dependencies 

between features and have been applied to predict 

gene function, drug-target interactions, and 

disease subtypes. 

• Transformers: Initially developed for natural 

language processing, transformer architectures 

(e.g., BERT-like models) are being adapted for 

multi-omics tasks. Their self-attention 

mechanism enables the model to focus on 

relevant feature relationships across data 

types.39,40 

Interpretable Deep Learning Models: Drug Cell 

and Deep MO 

Interpretability remains a significant concern in 

applying deep learning to clinical decision-making. 

Recent efforts focus on embedding biological 

knowledge into model architecture or generating 

feature importance scores. 

• Drug Cell: A biologically interpretable deep 

learning model that maps genomic alterations to 

drug responses by embedding a hierarchical 

structure of cellular subsystems. Each subsystem 

corresponds to a biological process or pathway, 
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allowing users to trace predictions to specific 

molecular mechanisms. DrugCell demonstrated 

high accuracy in predicting the sensitivity of 

cancer cell lines and provided mechanistic 

insights into the action of drugs. 

• DeepMO: A deep neural network model 

designed for late-fusion integration of multi-

omics data. It trains separate encoders for each 

omics type and combines the outputs in a shared 

latent layer. DeepMO has been used for drug 

synergy prediction and cancer subtype 

classification. Unlike early fusion methods, it 

allows flexibility in handling missing modalities. 

These interpretable frameworks bridge the gap 

between predictive performance and clinical trust, 

making them suitable for translational 

applications.39,41 

Challenges and Considerations 

Despite their promise, computational models for 

multi-omics face several challenges: 

• Data heterogeneity: Varying scales, 

distributions, and missingness complicate 

integration. 

• Sample size limitations: High dimensionality 

often exceeds the number of available samples, 

necessitating regularization and careful 

validation. 

• Biological validation: Computational 

predictions require experimental corroboration, 

which can be time-consuming and resource-

intensive. 

• Generalizability: Models trained on specific 

cohorts may not transfer across populations due 

to demographic or technical variability. 

Continued development of benchmarking 

frameworks, interpretability tools, and biologically 

informed architectures will be essential to 

overcoming these barriers. Computational and AI 

tools are foundational to realizing the potential of 

multi-omics in precision medicine. From statistical 

factor models like MOFA and DIABLO to deep 

learning architectures such as DrugCell and DeepMO, 

these approaches enable integrative analysis that 

uncovers hidden structures, predicts treatment 

responses, and informs clinical decision-making. As 

algorithms become more interpretable and scalable, 

their adoption in clinical workflows is expected to 

accelerate, ushering in an era of data-driven, 

individualized healthcare.42 

6. Case Studies and Clinical Applications 

Real-world implementation of multi-omics in clinical 

settings has begun to reshape therapeutic decision-

making, biomarker development, and patient 

stratification across various cancers and complex 

diseases. Between 2021 and 2024, several influential 

studies and clinical trials have demonstrated how 

multi-omics integration improves the prediction of 

treatment outcomes and enables personalized 

therapeutic strategies. The following case studies 

exemplify the transformative potential of multi-omics 

in practice. 
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Figure 5. Diagram showing the process beginning 

with tumour biopsy and surgical resection, leading to 

single-cell suspensions and the generation of 3D in 

vitro tumour models. Multi-omics profiling—

including genomics, transcriptomics, proteomics, 

epigenomics, and metabolomics—is then applied to 

these models. The integration of these data facilitates 

drug discovery pipelines and supports the 

development of tailored therapeutic strategies in 

precision oncology. 

1) TCGA Pan-Cancer Atlas: Multi-Omics 

Integration for Survival Prediction 

The TCGA Pan-Cancer Atlas project represents one 

of the most comprehensive efforts to integrate multi-

omics data across diverse tumour types. In a 2022 

extension of the initiative, researchers combined 

genomic, transcriptomic, epigenomic, and proteomic 

profiles across over 10,000 tumour samples to 

identify multi-modal molecular subtypes linked to 

clinical outcomes. Latent factor analysis (e.g., using 

MOFA and iCluster) revealed trans-omic features that 

stratified patients more effectively than single-omics 

approaches. For instance, a pan-cancer immune 

infiltration signature combining mRNA expression 
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(CD8A, GZMB), methylation (PD-L1 promoter), and 

proteomic markers (interferon-stimulated proteins) 

was predictive of survival across multiple cancer 

types. This integrative approach not only enhanced 

prognostic accuracy but also highlighted tissue-

agnostic therapeutic targets, supporting a shift toward 

biomarker-driven oncology.43 

2) WINTHER Trial: Transcriptome-Guided 

Therapy in Metastatic Cancer 

The WINTHER trial (Lancet Oncology, 2022) was 

among the first clinical trials to use transcriptomic 

profiling to guide therapy in advanced solid tumours 

beyond genomic alterations alone. Patients underwent 

both DNA and RNA sequencing, and those without 

actionable genomic mutations were matched to 

therapies based on RNA expression signatures. By 

integrating transcriptomic data into the treatment 

algorithm, the trial achieved a 35% clinical benefit 

rate in the transcriptome-matched group compared to 

20% in the genome-only group. Importantly, RNA-

based therapy recommendations were feasible in 98% 

of patients, compared to only 40% based on genomic 

profiling. These findings underscore the clinical 

relevance of transcriptomics, especially when 

genomic alterations are insufficient to guide 

therapy.44 

3) EGFR-Mutant Lung Cancer: Multi-Omics 

Modelling for Osimertinib Resistance 

A 2023 study (Nature Medicine) investigated 

mechanisms of acquired resistance to Osimertinib, a 

third-generation EGFR tyrosine kinase inhibitor, 

using an integrative multi-omics framework. 

Researchers profiled pre- and post-resistance biopsies 

using whole-exome sequencing, Phosphoproteomics, 

and single-cell RNA sequencing. The study identified 

multiple resistance mechanisms, including MET 

amplification (genomics), activation of bypass 

pathways (proteomics), and phenotypic 

transformation to a mesenchymal state (single-cell 

RNA sequencing, scRNA-seq). Importantly, 

proteogenomic analysis revealed persistent activation 

of the PI3K-AKT signalling pathway, even in the 

absence of genomic alterations, highlighting hidden 

vulnerabilities for combination therapy with PI3K 

inhibitors. This integrative approach has informed the 

design of ongoing basket trials combining EGFR and 

PI3K/AKT inhibitors in patients with resistant 

NSCLC, demonstrating the value of linking 

multimodal data to therapeutic strategy.13,45 

4) PARP Inhibitors in BRCA-Wild-Type 

Tumour s: Multi-Omics-Derived HRD Scores 

While BRCA1/2 mutations are established 

biomarkers for PARP inhibitor response, many 

BRCA-wild-type tumours exhibit homologous 

recombination deficiency (HRD) through alternative 

mechanisms. A 2021 multi-centre study employed 

genomic, methylation, and transcriptomic data to 

develop an integrative HRD score across ovarian and 

breast cancer cohorts. The model incorporated 

promoter methylation of BRCA1, mutational 

signatures (Signature 3), gene expression of HR 

pathway genes (e.g., RAD51, ATM), and large-scale 

state transitions (LSTs) to classify HRD-positive 

tumours. Patients with high composite HRD scores 

derived significant benefit from PARP inhibition, 

despite lacking BRCA mutations. This approach has 

been validated in the NOVA and ARIEL3 trials, 

prompting efforts to adopt pan-omics HRD profiling 

as a standard for patient selection and treatment.46 

5) Single-Cell and Spatial Omics in Melanoma 

Immunotherapy (Cell, 2022) 

A pivotal study published in Cell (2022) integrated 

single-cell RNA-seq, TCR sequencing, and spatial 

transcriptomics to examine tumour-immune 

interactions in melanoma patients receiving immune 

checkpoint inhibitors (ICIs). The analysis revealed 

that responders had spatially organized "immune 

hubs," where clonally expanded CD8+ T cells 

expressing cytotoxic and memory markers co-

localized with tumour cells and antigen-presenting 

cells. Non-responders, in contrast, showed spatial 

segregation of immune cells and tumour cells, along 

with elevated expression of exhaustion markers (e.g., 

TOX, LAG3) in T cells. These findings demonstrate 

how spatial and single-cell resolution can reveal 

functional heterogeneity that is invisible to bulk 

profiling. The study provided a blueprint for spatial 

biomarkers and informed strategies for enhancing 

immune infiltration and response to ICIs. These 

recent case studies illustrate the clinical impact of 

multi-omics integration across various cancer types 

and treatment modalities. Whether by improving 



Manish Khairnar, Int. J. Sci. R. Tech., 2025 2(7), 162-186 |Review 

                 

              INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH AND TECHNOLOGY                                                              178 | P a g e  

survival prediction (TCGA), guiding therapy beyond 

DNA mutations (WINTHER), resolving resistance 

mechanisms (EGFR/Osimertinib), refining biomarker 

definitions (HRD), or mapping immunotherapy 

responses (melanoma), multi-omics approaches are 

enabling a new level of precision in medical decision-

making. As omics technologies become more 

accessible and interoperable, their incorporation into 

clinical workflows is poised to accelerate. The future 

of personalized medicine will be increasingly shaped 

by integrative, context-aware models that align 

molecular complexity with therapeutic intent.1 

7. Microbiome-Host Omics Integration 

The human microbiome, particularly the gut 

microbiota, plays a crucial role in modulating drug 

response through direct metabolic interactions, 

immune modulation, and systemic signalling. As the 

interface between host physiology and environmental 

exposures, the microbiome acts as both a driver and a 

sensor of therapeutic outcomes. Integrating 

microbiome profiling with host omics—such as 

transcriptomics and metabolomics—offers a powerful 

approach to uncovering the complex and bidirectional 

influences of microbial communities on precision 

medicine. 

Microbiota-Driven Drug Metabolism 

Microbial enzymes can alter the bioavailability and 

toxicity of drugs by chemically modifying active 

compounds. For instance, bacterial β-glucuronidases 

reactivate the chemotherapy drug irinotecan in the 

colon, resulting in gastrointestinal toxicity. Inhibiting 

these microbial enzymes has been shown to reduce 

side effects without compromising anticancer 

efficacy. Similarly, Eggerthella lenta metabolizes the 

cardiac drug digoxin into inactive forms, modulating 

its therapeutic window based on the abundance of 

specific bacterial strains. Methotrexate, an 

immunosuppressant used in the treatment of cancer 

and autoimmune diseases, is also subject to microbial 

transformation, which can either amplify or attenuate 

its effects. Understanding these drug-microbe 

interactions requires comprehensive profiling of 

microbial gene function. Tools like PICRUSt, 

QIIME2, and HUMAnN2 enable functional 

annotation of metagenomic data, linking microbial 

composition to metabolic capacity and predicting how 

microbial enzymes impact host drug metabolism.47 

Integration with Host Transcriptomics and 

Metabolomics 

Multi-omic integration facilitates a systems-level 

view of host-microbiome interactions. For example, 

combining microbiome profiles with host 

transcriptomics can help identify microbe-induced 

changes in gene expression in epithelial or immune 

cells. In one study, microbiota-mediated changes in 

tryptophan metabolism altered the expression of 

AHR-dependent genes in intestinal tissue, impacting 

mucosal immunity and barrier function. Metabolomic 

integration further reveals microbially derived 

metabolites such as short-chain fatty acids (SCFAs), 

bile acids, and polyamines that regulate immune tone 

and inflammation. These metabolites can shape 

transcriptional responses, modulate histone 

acetylation, and influence T cell differentiation—

thereby linking microbiome status to systemic 

immunity and drug efficacy.48 

Impact on Immunotherapy and FMT 

The gut microbiome has emerged as a significant 

determinant of response to immune checkpoint 

inhibitors (ICIs). Responders to PD-1 blockade often 

harbour distinct microbial signatures enriched in taxa 

such as Akkermansia muciniphila and Faecal 

bacterium prausnitzii, which are associated with 

increased antigen presentation and T-cell priming. 

Conversely, antibiotic exposure that disrupts 

microbiome diversity has been correlated with 

reduced ICI efficacy. Mechanistic studies have shown 

that transferring microbiota from responders into 

germ-free or antibiotic-treated mice enhances anti-

tumour immunity, validating causality. Faecal 

microbiota transplantation (FMT) is being 

investigated as a therapeutic strategy to restore 

responsiveness in individuals who do not respond to 

conventional treatments. Clinical trials in melanoma 

patients have shown that FMT from ICI responders 

can reprogram the tumour microenvironment and 

reinvigorate exhausted T cells. Ongoing efforts aim to 

identify the specific microbial functions and 

metabolites that mediate these effects. As microbiome 

profiling becomes more routine, integrating microbial 

and host omics will be essential to refining therapeutic 
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strategies, predicting toxicity, and engineering the 

microbiome for clinical benefit.49 

8. Temporal Omics and Dynamic Response 

Biological systems are inherently dynamic, and static 

snapshots provided by conventional omics often fail 

to capture the temporal evolution of disease and 

treatment response. Temporal omics—based on 

longitudinal sampling and time-series analysis- 

provides critical insights into how molecular profiles 

change over time, enabling the development of 

adaptive strategies in precision medicine. 

Time-Series Omics Platforms 

Technologies such as longitudinal RNA-seq, 

phospho-proteomics, and metabolomics allow 

repeated sampling from the same patient or model 

system across treatment timelines. For example, 

tracking Phosphoproteomics changes during kinase 

inhibitor therapy can reveal early rewiring of 

signalling pathways that precede phenotypic 

resistance. Serial metabolomic profiling during 

immunotherapy has been used to monitor shifts in 

metabolic signatures, such as amino acid depletion or 

lipid remodeling, that correlate with immune 

activation or suppression. Similarly, repeated 

transcriptomic analysis can detect immune-related 

gene expression dynamics in blood or tumour 

biopsies.50 

Modelling Approaches for Temporal Data 

Several computational methods have been developed 

to analyse time-series omics: 

• Dynamic Bayesian Networks (DBNs): Infer 

probabilistic temporal dependencies between 

molecular entities. DBNs have been used to 

reconstruct gene regulatory networks that evolve 

during drug response. 

• Gaussian Process Models: Provide a flexible 

framework for modelling non-linear temporal 

patterns and estimating confidence intervals. 

These models are well-suited for small-sample 

longitudinal data with irregular time points. 

• Trajectory Inference Tools (e.g., Monocle, 

Slingshot): While initially designed for single-

cell pseudo time analysis, these tools can be 

adapted to bulk omics data to reconstruct 

differentiation or resistance trajectories over time. 

By combining these models with prior biological 

knowledge, researchers can identify transient 

regulators, bifurcation points, and feedback loops that 

drive therapeutic adaptation.51 

Applications in Immunotherapy and Resistance 

Tracking 

In cancer immunotherapy, temporal transcriptomics 

has revealed how interferon response genes and 

checkpoint molecules fluctuate throughout treatment. 

Early elevation of IFN-γ-responsive genes has been 

associated with long-term benefit, whereas persistent 

expression of exhaustion markers predicts relapse. 

Time-series omics also aids in tracking the emergence 

of resistance. In chronic myeloid leukaemia, 

sequential transcriptomic profiling during tyrosine 

kinase inhibitor therapy uncovered activation of 

compensatory signalling pathways that herald 

treatment escape. By capturing molecular dynamics, 

temporal omics enables real-time monitoring, early 

warning systems for resistance, and optimization of 

treatment schedules. Temporal and microbiome-host 

omics integration offer powerful extensions to 

traditional multi-omics frameworks. While temporal 

omics decodes the kinetics of molecular adaptation, 

microbiome integration contextualizes systemic 

influences on therapy response. Together, these 

dynamic and ecological perspectives will be 

instrumental in designing truly adaptive, 

personalized, and resilient therapeutic strategies.52,53 

9. Ethical, Legal, and Social Implications 

The integration of multi-omics into precision 

medicine raises a complex array of ethical, legal, and 

social implications (ELSI) that must be addressed to 

ensure responsible and equitable implementation. As 

omics technologies advance in sensitivity and scale, 

so too do the risks associated with privacy, consent, 

and access. 

Risks of Data Re-Identification 

Multi-omics datasets, especially when linked to 

clinical and demographic metadata, create highly 
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identifiable molecular fingerprints. Even when 

anonymized, the depth of information in genomic, 

transcriptomic, and epigenomic profiles enables re-

identification through triangulation with public 

databases or environmental metadata. This raises 

critical concerns about individual privacy, potential 

discrimination, and unauthorized use of sensitive 

health data.54 

Cross-Jurisdictional Data Governance 

Global research collaborations must navigate 

differing legal frameworks governing data protection 

and sharing. The European Union’s General Data 

Protection Regulation (GDPR) and the U.S. The 

Health Insurance Portability and Accountability Act 

(HIPAA) imposes strict conditions on the use of data, 

de-identification, and obtaining participant consent. 

Compliance challenges arise when datasets are shared 

across borders or integrated into multinational studies, 

necessitating robust data governance structures, 

including data access committees and ethical 

oversight.55 

Dynamic Consent and FAIR Principles 

Traditional static consent models are inadequate for 

multi-omics research, which often involves 

longitudinal studies, the use of secondary data, and 

evolving research objectives. Dynamic consent 

frameworks enable participants to update their 

preferences over time, enhancing transparency and 

autonomy. Additionally, adherence to FAIR 

(Findable, Accessible, Interoperable, Reusable) 

principles promotes responsible data stewardship 

while maximizing scientific value. FAIR-compliant 

infrastructures also facilitate reproducibility and trust 

in AI-driven models trained on omics data.56 

Equity and Inclusion in Omics and AI 

A major ethical challenge lies in the 

underrepresentation of non-European ancestries in 

omics datasets, which biases biomarker discovery, 

risk prediction, and the performance of AI models. 

This disparity risks exacerbating health inequalities 

by producing clinical tools that are less effective or 

even harmful for marginalized populations. Equitable 

precision medicine requires deliberate inclusion of 

diverse populations in biobanks, sequencing efforts, 

and clinical trials. Additionally, AI models must be 

audited for fairness, explainability, and 

generalizability across populations. Ethical 

frameworks should also account for systemic factors 

influencing access to omics-based care, including 

socioeconomic status, digital literacy, and healthcare 

infrastructure. Addressing these ELSI dimensions is 

essential not only for public trust but also for ensuring 

that the benefits of multi-omics in precision medicine 

are distributed fairly and sustainably.57 

10. Challenges and Unmet Needs 

While multi-omics technologies hold transformative 

potential, their clinical translation is impeded by 

numerous technical, infrastructural, and social 

challenges. Addressing these unmet needs is essential 

for realizing the full promise of omics-driven 

precision medicine. 

Data Harmonization and Standardization 

Multi-omics integration is hindered by data 

heterogeneity, which encompasses differences in 

sample processing, sequencing platforms, 

normalization protocols, and annotation standards. 

The lack of harmonized pipelines leads to 

irreproducibility and limits the potential for meta-

analysis. Standardized workflows for data 

preprocessing, quality control, and integration are 

urgently needed. Community-driven efforts, such as 

the Global Alliance for Genomics and Health 

(GA4GH) and the Human Cell Atlas, are developing 

interoperable standards; however, adoption remains 

inconsistent across institutions.58 

Clinical Reporting and Regulatory Alignment 

Translating omics insights into clinical action requires 

transparent, standardized reporting of findings. 

Currently, there is no universal format for integrating 

multi-omics results into electronic health records 

(EHRs) or for conveying actionable results to 

clinicians. Guidelines akin to those for genomics (e.g., 

ACMG variant classification) are needed for other 

omics layers, including transcriptomics, proteomics, 

and metabolomics. Regulatory frameworks must also 

evolve to assess the validity and clinical utility of 

multi-omics tests.59 
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Interoperability with Electronic Health Systems 

Integrating omics data into EHRs presents a 

significant logistical hurdle. Most health IT systems 

are not designed to accommodate high-dimensional, 

longitudinal, or unstructured omics data. Efforts like 

SMART on FHIR are beginning to bridge this gap, 

but scalable, secure, and interoperable solutions 

remain limited. Bidirectional integration, where 

clinical context informs omics interpretation, and 

omics data inform decision support, is crucial for real-

time, adaptive precision medicine.60 

Cost, Accessibility, and Infrastructure 

High costs associated with sequencing, data storage, 

and bioinformatics analysis pose barriers to 

widespread adoption. In low- and middle-income 

countries, limited infrastructure exacerbates 

disparities in access to omics technologies and 

expertise. Strategies to reduce costs include pooled 

sequencing, federated data analysis, and cloud-based 

platforms. Investments in capacity building and 

international data sharing are also necessary to 

democratize multi-omics research and its 

applications. 

Inclusion and Representation 

A persistent gap in current omics studies is the 

underrepresentation of individuals from non-

European ancestries, rural populations, and 

socioeconomically disadvantaged groups. This limits 

the generalizability of findings and perpetuates biases 

in predictive models. Programs like All of Us and 

H3Africa are attempting to address this imbalance, 

but broader efforts are necessary. Representation 

should also extend to disease types, environmental 

exposures, and gender identities to capture the full 

diversity of human biology.61 Overcoming these 

challenges will require coordinated efforts among 

researchers, clinicians, policymakers, and 

communities. By building equitable, interoperable, 

and standards-based systems, the field can ensure that 

multi-omics fulfils its promise as a cornerstone of 

21st-century medicine. 

11. Future Outlook: Real-Time and Predictive 

Precision Medicine 

The next frontier of precision medicine is being 

shaped by real-time, predictive, and mechanistic 

insights derived from integrated multi-omics. Rapid 

advances in technology, computation, and healthcare 

infrastructure are converging to enable continuous, 

adaptive, and decentralized models of care. 

Real-Time Omics via Liquid Biopsies 

Traditional tissue biopsies provide static, invasive 

snapshots of disease. In contrast, liquid biopsies, 

analyzing circulating cell-free DNA (cfDNA), RNA, 

and extracellular vesicles, such as exosomes, offer 

minimally invasive access to dynamic molecular 

information. These biospecimens enable the 

longitudinal monitoring of tumour burden, clonal 

evolution, and resistance mutations without the need 

for repeated invasive procedures. Recent 

developments in ultra-sensitive sequencing have 

improved detection of low-frequency variants in 

cfDNA, making it feasible to track molecular relapse 

before clinical progression. Integration with 

proteomic and metabolomic data from exosomes and 

plasma extends this approach to functional 

monitoring of disease.62 

Digital Health Integration 

Combining multi-omics with digital health data, such 

as wearable sensors, patient-reported outcomes, and 

EHR-derived clinical variables, enhances 

contextualization of molecular signals. For example, 

linking glucose monitoring, physical activity, and 

metabolomics can refine precision nutrition or 

diabetes management. Similarly, wearable-based 

heart rate variability and immune profiling could 

inform the timing of immunotherapy.63 

Federated Learning and Edge Computing 

To overcome barriers in data centralization, federated 

learning enables decentralized model training across 

multiple institutions without requiring the transfer of 

raw data. This preserves patient privacy while 

harnessing population-scale omics datasets. Coupled 

with edge computing, real-time analysis of omics data 

at the site of collection (e.g., hospitals, biobanks, 

mobile devices) becomes viable, supporting time-

sensitive clinical decisions.64 
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Rise of Clinical Decision Support Tools (CDSTs) 

AI-driven CDSTs are being developed to integrate 

multi-omics profiles with clinical data, offering 

evidence-based treatment recommendations. Tools 

like DeepMO and NetDx are being adapted for 

clinical environments, with a focus on prioritizing 

interpretability, robustness, and user trust. These 

systems can assist clinicians in identifying therapeutic 

matches, flagging adverse events, or tailoring 

monitoring strategies.65 

Toward Mechanistic and Trans-Omics Models 

Future predictive frameworks will not only identify 

correlations but also uncover causal relationships 

using trans-omics models that link genetic variants to 

phenotypes through layered regulatory networks. 

Causal inference algorithms and perturbation-based 

data (e.g., CRISPR screens, drug perturbations) will 

be vital for translating omics into actionable 

mechanisms.66 Ultimately, the goal is a real-time, 

learning health system where mechanistic omics 

insights drive personalized, proactive, and equitable 

healthcare. 

CONCLUSION 

Multi-omics has redefined the landscape of 

biomedical science, propelling precision medicine 

from descriptive stratification to mechanistic, 

individualized interventions. By integrating 

genomics, epigenomics, transcriptomics, proteomics, 

and metabolomics, researchers and clinicians can 

decode the complexity of human biology with 

unprecedented depth and precision. The transition 

from siloed analyses to interconnected, systems-level 

approaches has been accelerated by technological 

advances and computational innovation. Notably, 

single-cell, spatial, and temporal multi-omics have 

exposed critical dimensions of heterogeneity, 

dynamic adaptation, and tissue microarchitecture that 

directly inform therapy response. This review has 

explored how integrative multi-omics is being 

deployed across domains—from clinical trials to 

routine care through AI-driven models, real-time 

liquid biopsies, and microbiome-host interactions. 

While challenges in standardization, ethics, and 

accessibility remain, the roadmap to implementation 

is increasingly evident. The future of omics-powered 

medicine demands multidisciplinary collaboration, 

inclusivity in data representation, and a commitment 

to responsible innovation. By embracing these 

principles, we can ensure that the full potential of 

multi-omics is realized, leading to improved health 

outcomes for all individuals, regardless of their 

background, geography, or disease type. 

REFERENCE 

1. Ahmed Z. Practicing precision medicine with 

intelligently integrative clinical and multi-omics 

data analysis. Human Genomics 2020;14(1); doi: 

10.1186/s40246-020-00287-z. 

2. Deng Y, Fan R, Finck A. Single-Cell Omics 

Analyses Enabled by Microchip Technologies. 

Annual Review of Biomedical Engineering 

2019;21(1):365–393; doi: 10.1146/annurev-

bioeng-060418-052538. 

3. Ramos LM, Rodrigues MO, Neto BAD. 

Mechanistic Knowledge and Noncovalent 

Interactions as the Key Features for 

Enantioselective Catalysed Multicomponent 

Reactions: A Critical Review. Org Biomol Chem 

2019; 17:7260. 

4. Lim J, Park C, Kim M, et al. Advances in single-

cell omics and multiomics for high-resolution 

molecular profiling. Experimental &amp; 

Molecular Medicine 2024;56(3):515–526; doi: 

10.1038/s12276-024-01186-2. 

5. Theodorakis N, Feretzakis G, Tzelves L, et al. 

Integrating Machine Learning with Multi-Omics 

Technologies in Geroscience: Towards 

Personalized Medicine. Journal of personalized 

medicine 2024;14(9):931; doi: 

10.3390/jpm14090931. 

6. Becket E, Charlet J, Pandiyan K, et al. 

Identification of DNA Methylation-Independent 

Epigenetic Events Underlying Clear Cell Renal 

Cell Carcinoma. Cancer Research 

2016;76(7):1954–1964; doi: 10.1158/0008-

5472.can-15-2622. 

7. Flippot R, Mouawad R, Spano J-P, et al. Cancer 

subtypes classification using long non-coding 

RNA. Oncotarget 2016;7(33):54082–54093; doi: 

10.18632/oncotarget.10213. 

8. Woo S, Pevzner PA, Bonissone S, et al. Advanced 

Proteogenomic Analysis Reveals Multiple 

Peptide Mutations and Complex Immunoglobulin 

Peptides in Colon Cancer. Journal of Proteome 



Manish Khairnar, Int. J. Sci. R. Tech., 2025 2(7), 162-186 |Review 

                 

              INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH AND TECHNOLOGY                                                              183 | P a g e  

Research 2015;14(9):3555–3567; doi: 

10.1021/acs.jproteome.5b00264. 

9. Silverman B, Shi J. Alterations of Epigenetic 

Regulators in Pancreatic Cancer and Their 

Clinical Implications. International Journal of 

Molecular Sciences 2016;17(12):2138; doi: 

10.3390/ijms17122138. 

10. Zhu Z, Xueying L, Chunlin L, et al. Effect of 

berberine on LPS-induced expression of NF- κ 

B/MAPK signalling pathway and related 

inflammatory cytokines in porcine intestinal 

epithelial cells. Innate Immun 2020;26(7):627–

634; doi: 10.1177/1753425920930074. 

11. Turcan Ş, Huse JT, Goenka A, et al. IDH1 

mutation is sufficient to establish the glioma 

hypermethylator phenotype. Nature 

2012;483(7390):479–483; doi: 

10.1038/nature10866. 

12. Pache M, Kedar H, Kond S, et al. 

Pharmacological Management of 

Neurodegenerative Disorders: Current and Future 

Approaches. Int J Sci R Tech 2025;2(3):405–520; 

doi: 10.5281/ZENODO.15074000. 

13. Zhao Y, Xu X, Zhou J, et al. Multi-omics analysis 

of genomics, epigenomics and transcriptomics for 

molecular subtypes and core genes for lung 

adenocarcinoma. BMC Cancer 2021;21(1); doi: 

10.1186/s12885-021-07888-4. 

14. Singh A, Lê Cao K-A, Gautier B, et al. DIABLO: 

an integrative approach for identifying key 

molecular drivers from multi-omics assays. 

Bioinformatics 2019;35(17):3055–3062; doi: 

10.1093/bioinformatics/bty1054. 

15. Nguyen LC, Ghislat G, Ballester PJ, et al. 

Predicting Cancer Drug Response In Vivo by 

Learning an Optimal Feature Selection of Tumour 

Molecular Profiles. Biomedicines 

2021;9(10):1319; doi: 

10.3390/biomedicines9101319. 

16. Liu J, Fan Z, Zhao W, et al. Machine Intelligence 

in Single-Cell Data Analysis: Advances and New 

Challenges. Frontiers in genetics 2021;12(194); 

doi: 10.3389/fgene.2021.655536. 

17. Chai H, Zhou X, Zhang Z, et al. Integrating multi-

omics data through deep learning for accurate 

cancer prognosis prediction. Computers in 

Biology and Medicine 2021; 134:104481; doi: 

10.1016/j.compbiomed.2021.104481. 

18. Shlush LI, Abelson S, Hudson TJ, et al. Tracing 

the origins of relapse in acute myeloid leukaemia 

to stem cells. Nature 2017;547(7661):104–108; 

doi: 10.1038/nature22993. 

19. Pache M, Nikam S. Antibiotic Resistance: 

Current Challenges and Future Directions. Int J of 

Pharm Sci 2025;3(1):1600–1622; doi: 

10.5281/ZENODO.14690670. 

20. Ahmed F, Haass NK. Microenvironment-Driven 

Dynamic Heterogeneity and Phenotypic Plasticity 

as a Mechanism of Melanoma Therapy 

Resistance. Frontiers in Oncology 2018;8(16); 

doi: 10.3389/fonc.2018.00173. 

21. Jiménez-Reinoso A, Domínguez-Alonso C, 

Nehme-Álvarez D, et al. Synthetic TILs: 

Engineered Tumor-Infiltrating Lymphocytes 

With Improved Therapeutic Potential. Frontiers 

in oncology 2021;10(6165); doi: 

10.3389/fonc.2020.593848. 

22. Jiang P, Zhang Z, Zhu M, et al. Single-cell 

ATAC-seq maps the comprehensive and dynamic 

chromatin accessibility landscape of CAR-T cell 

dysfunction. Leukemia 2022;36(11):2656–2668; 

doi: 10.1038/s41375-022-01676-0. 

23. Marczyk M, Patwardhan GA, Zhao J, et al. Multi-

Omics Investigation of Innate Navitoclax 

Resistance in Triple-Negative Breast Cancer 

Cells. Cancers 2020;12(9):2551; doi: 

10.3390/cancers12092551. 

24. Mathema VB, Sen P, Lamichhane S, et al. Deep 

learning facilitates multi-data type analysis and 

predictive biomarker discovery in cancer 

precision medicine. Computational and Structural 

Biotechnology Journal 2023; 21:1372–1382; doi: 

10.1016/j.csbj.2023.01.043. 

25. Hu Y, Guo Y, Sheu K, et al. Single Cell Multi-

Omics Technology: Methodology and 

Application. Frontiers in Cell and Developmental 

Biology 2018;6; doi: 10.3389/fcell.2018.00028. 

26. Wang Z, Li H, Carpenter C, et al. Challenge-

Enabled Machine Learning to Drug-Response 

Prediction. AAPS J 2020;22(5):106; doi: 

10.1208/s12248-020-00494-5. 

27. Hickey JW, Zhu B, Sunwoo JB, et al. T cell-

mediated curation and restructuring of tumor 

tissue coordinates an effective immune response. 

Cell reports 2023;42(12):113494; doi: 

10.1016/j.celrep.2023.113494. 



Manish Khairnar, Int. J. Sci. R. Tech., 2025 2(7), 162-186 |Review 

                 

              INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH AND TECHNOLOGY                                                              184 | P a g e  

28. Liu W, Puri A, Fu D, et al. Dissecting the tumor 

microenvironment in response to immune 

checkpoint inhibitors via single-cell and spatial 

transcriptomics. Clinical & Experimental 

Metastasis 2023;41(4):313–332; doi: 

10.1007/s10585-023-10246-2. 

29. Bagchi S, Yuan R, Engleman EG. Immune 

Checkpoint Inhibitors for the Treatment of 

Cancer: Clinical Impact and Mechanisms of 

Response and Resistance. Annual Review of 

Pathology: Mechanisms of Disease 

2020;16(1):223–249; doi: 10.1146/annurev-

pathol-042020-042741. 

30. Liang A, Kong Y, Chen Z, et al. Advancements 

and applications of single-cell multi-omics 

techniques in cancer research: Unveiling 

heterogeneity and paving the way for precision 

therapeutics. Biochemistry and Biophysics 

Reports 2023; 37:101589; doi: 

10.1016/j.bbrep.2023.101589. 

31. Schäfer PSL, Dimitrov D, Saez-Rodriguez J, et al. 

Integrating single-cell multi-omics and prior 

biological knowledge for a functional 

characterization of the immune system. Nature 

Immunology 2024;25(3):405–417; doi: 

10.1038/s41590-024-01768-2. 

32. Acharya D, Mukhopadhyay A. A comprehensive 

review of machine learning techniques for multi-

omics data integration: challenges and 

applications in precision oncology. Briefings in 

functional genomics 2024;23(5):549–560; doi: 

10.1093/bfgp/elae013. 

33. Poirion OB, Poirion OB, Poirion OB, et al. 

DeepProg: an ensemble of deep-learning and 

machine-learning models for prognosis prediction 

using multi-omics data. Genome Medicine 

2021;13(1); doi: 10.1186/s13073-021-00930-x. 

34. Pache MM, Pangavhane RR, Jagtap MN, et al. 

The AI-Driven Future of Drug Discovery: 

Innovations, Applications, and Challenges. Asian 

J Res Pharm Sci 2025;15(1):61–67; doi: 

10.52711/2231-5659.2025.00009. 

35. Nam Y, Kim J, Kim J, et al. Harnessing Artificial 

Intelligence in Multimodal Omics Data 

Integration: Paving the Path for the Next Frontier 

in Precision Medicine. Annual review of 

biomedical data science 2024;7(1):225–250; doi: 

10.1146/annurev-biodatasci-102523-103801. 

36. Singh A, Shannon CP, Vacher M, et al. DIABLO: 

From Multi-Omics Assays to Biomarker 

Discovery, an Integrative Approach. 2016; doi: 

10.1101/067611. 

37. Zhang L, Cheng G, Jin Y, et al. Deep Learning-

Based Multi-Omics Data Integration Reveals 

Two Prognostic Subtypes in High-Risk 

Neuroblastoma. Frontiers in Genetics 2018;9; 

doi: 10.3389/fgene.2018.00477. 

38. Francescatto M, Furlanello C, Zandonà A, et al. 

Multi-omics integration for neuroblastoma 

clinical endpoint prediction. Biology Direct 

2018;13(1); doi: 10.1186/s13062-018-0207-8. 

39. Lan W, Liao H, Chen Q, et al. DeepKEGG: a 

multi-omics data integration framework with 

biological insights for cancer recurrence 

prediction and biomarker discovery. Briefings in 

bioinformatics 2024;25(3); doi: 

10.1093/bib/bbae185. 

40. Athaya T, Ripan RC, Li X, et al. Multimodal deep 

learning approaches for single-cell multi-omics 

data integration. Briefings in bioinformatics 

2023;24(5); doi: 10.1093/bib/bbad313. 

41. Feng J, Zhang H, Li F. Investigating the relevance 

of major signaling pathways in cancer survival 

using a biologically meaningful deep learning 

model. BMC Bioinformatics 2021;22(1); doi: 

10.1186/s12859-020-03850-6. 

42. Terranova N, Venkatakrishnan K. Machine 

Learning in Modeling Disease Trajectory and 

Treatment Outcomes: An Emerging Enabler for 

Model-Informed Precision Medicine. Clinical 

Pharmacology &amp; Therapeutics 

2024;115(4):720–726; doi: 10.1002/cpt.3153. 

43. Milner DA, Lennerz JK. Technology and Future 

of Multi-Cancer Early Detection. Life (Basel, 

Switzerland) 2024;14(7):833; doi: 

10.3390/life14070833. 

44. Rodón J, Martini J-F, Rubin E, et al. Genomic and 

transcriptomic profiling expands precision cancer 

medicine: the WINTHER trial. Nature Medicine 

2019;25(5):751–758; doi: 10.1038/s41591-019-

0424-4. 

45. Lin W, Li N, Yang L, et al. The efficacy of digital 

cognitive behavioral therapy for insomnia and 

depression: a systematic review and meta-

analysis of randomized controlled trials. PeerJ 

2023;11: e16137; doi: 10.7717/peerj.16137. 



Manish Khairnar, Int. J. Sci. R. Tech., 2025 2(7), 162-186 |Review 

                 

              INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH AND TECHNOLOGY                                                              185 | P a g e  

46. Hodgson DR, Gourley C, Ho TW, et al. Candidate 

biomarkers of PARP inhibitor sensitivity in 

ovarian cancer beyond the BRCA genes. British 

Journal of Cancer 2018;119(11):1401–1409; doi: 

10.1038/s41416-018-0274-8. 

47. Kumar K, Sharma AK, Srivastava GN, et al. 

Mechanistic and structural insight into 

promiscuity-based metabolism of cardiac drug 

digoxin by gut microbial enzyme. Journal of 

Cellular Biochemistry 2018;119(7):5287–5296; 

doi: 10.1002/jcb.26638. 

48. Calvo-Barreiro L, Naik SP, Zhang L, et al. Gut 

Microbial-Derived Metabolites as Immune 

Modulators of T Helper 17 and Regulatory T 

Cells. International Journal of Molecular Sciences 

2023;24(2):1806; doi: 10.3390/ijms24021806. 

49. Ting NL-N, Yu J, Lau HC-H. Cancer 

pharmacomicrobiomics: targeting microbiota to 

optimise cancer therapy outcomes. Gut 

2022;71(7):1412–1425; doi: 10.1136/gutjnl-

2021-326264. 

50. Jose A, Kulkarni P, Thilakan J, et al. Integration 

of pan-omics technologies and three-dimensional 

in vitro tumor models: an approach toward drug 

discovery and precision medicine. Molecular 

cancer 2024;23(1); doi: 10.1186/s12943-023-

01916-6. 

51. Wang J, Feng J, Chen X, et al. Integrated multi-

omics analysis and machine learning identify hub 

genes and potential mechanisms of resistance to 

immunotherapy in gastric cancer. Aging 

2024;16(8); doi: 10.18632/aging.205760. 

52. Raufaste-Cazavieille V, Droit A, Santiago R. 

Multi-omics analysis: Paving the path toward 

achieving precision medicine in cancer treatment 

and immuno-oncology. Frontiers in Molecular 

Biosciences 2022;9(1); doi: 

10.3389/fmolb.2022.962743. 

53. Pache MM, Pangavhane RR. Immunotherapy in 

Autoimmune Diseases: Current Advances and 

Future Directions. Asian Journal of 

Pharmaceutical Research 2025. 

54. Dupras C, Bunnik EM. Toward a Framework for 

Assessing Privacy Risks in Multi-Omic Research 

and Databases. The American Journal of 

Bioethics 2021;21(12):46–64; doi: 

10.1080/15265161.2020.1863516. 

55. Ghorashi SR, Bewong M, Zia T, et al. An 

Analytical Review of Industrial Privacy 

Frameworks and Regulations for Organisational 

Data Sharing. Applied Sciences 

2023;13(23):12727; doi: 10.3390/app132312727. 

56. Van Gool AJ, Kindt ASD, Niehues A, et al. A 

multi-omics data analysis workflow packaged as 

a FAIR Digital Object. GigaScience 2024;13; doi: 

10.1093/gigascience/giad115. 

57. Caliebe A, Sebro RA, Tekola‐Ayele F, et al. 

Including diverse and admixed populations in 

genetic epidemiology research. Genetic 

Epidemiology 2022;46(7):347–371; doi: 

10.1002/gepi.22492. 

58. Lu S, Du H, Fu S, et al. A multi-omics dataset of 

human transcriptome and proteome stable 

reference. Scientific Data 2023;10(1); doi: 

10.1038/s41597-023-02359-w. 

59. Benaich R, El Mendili S, Gahi Y. Advancing 

Healthcare Security: A Cutting-Edge Zero-Trust 

Blockchain Solution for Protecting Electronic 

Health Records. HighTech and Innovation 

Journal 2023;4(3):630–652; doi: 10.28991/hij-

2023-04-03-012. 

60. Tong L, Shi W, Isgut M, et al. Integrating Multi-

Omics Data With EHR for Precision Medicine 

Using Advanced Artificial Intelligence. IEEE 

Rev Biomed Eng 2024; 17:80–97; doi: 

10.1109/RBME.2023.3324264. 

61. Davis MB. Genomics and Cancer Disparities: 

The Justice and Power of Inclusion. Cancer 

discovery 2021;11(4):805–809; doi: 

10.1158/2159-8290.cd-21-0225. 

62. Visal TH, Den Hollander P, Mani SA, et al. 

Circulating tumour cells in the -omics era: how 

far are we from achieving the ‘singularity’? 

British Journal of Cancer 2022;127(2):173–184; 

doi: 10.1038/s41416-022-01768-9. 

63. Ali A, Al-Rimy BAS, Altamimi SN, et al. 

Empowering Precision Medicine: Unlocking 

Revolutionary Insights through Blockchain-

Enabled Federated Learning and Electronic 

Medical Records. Sensors 2023;23(17):7476; doi: 

10.3390/s23177476. 

64. Abimannan S, El-Alfy E-SM, Hussain S, et al. 

Towards Federated Learning and Multi-Access 

Edge Computing for Air Quality Monitoring: 

Literature Review and Assessment. Sustainability 

2023;15(18):13951; doi: 10.3390/su151813951. 



Manish Khairnar, Int. J. Sci. R. Tech., 2025 2(7), 162-186 |Review 

                 

              INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH AND TECHNOLOGY                                                              186 | P a g e  

65. Kim S, Ko H, Kim M, et al. XAI-Based Clinical 

Decision Support System: A Systematic Review. 

2024; doi: 10.20944/preprints202406. 0721.v1. 

66. Dugourd A, Olsen JV, Rocha M, et al. Causal 

integration of multi‐omics data with prior 

knowledge to generate mechanistic hypotheses. 

Molecular Systems Biology 2021;17(1); doi: 

10.15252/msb.20209730.  

 

HOW TO CITE: Manish Khairnar*, Siddhesh Marda, 

Integrative Multi-Omics in Precision Medicine: From 

Molecular Interconnectivity to Single-Cell Resolution, 

Int. J. Sci. R. Tech., 2025, 2 (7), 162-186. 

https://doi.org/10.5281/zenodo.15831126 


