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INTRODUCTION 

Digital signatures are an essential cryptographic 

technique used to ensure the authenticity, integrity, 

and non-repudiation of digital messages or 

documents. Among various digital signature schemes, 

the RSA-based digital signature is one of the most 

widely used due to its strong security foundation in 

public-key cryptography. However, traditional RSA 

implementations face challenges such as 

computational inefficiency and slow key generation, 

signing, and verification processes. To overcome 

these limitations, this project explores optimized 

RSA-based digital signatures by integrating Multi-

Prime RSA, Chinese Remainder Theorem (CRT)-

based signing, Sliding Window Exponentiation for 

faster verification, and SHA-3 hashing for improved 

security. These techniques collectively enhance 

performance while maintaining robust cryptographic 

security, making RSA signatures more efficient for 

real-time applications such as secure communication, 

digital certificates, and blockchain technology. This 

study aims to optimize key generation and verification 

without replacing RSA with alternative cryptographic 

methods, ensuring compatibility with existing RSA-

based security infrastructures.  The study integrates 

multiple advanced algorithms to optimize RSA-based 

digital signatures. Multi-Prime RSA enhances 

efficiency by using three or more primes, reducing 

computation time while maintaining security. The 

Chinese Remainder Theorem (CRT) accelerates 

signing by breaking complex calculations into smaller 

modular exponentiations. Sliding Window 

Exponentiation further optimizes RSA verification by 

reducing multiplication steps. SHA-3 hashing ensures 

message integrity and enhanced security against 

cryptographic attacks. The combination of these 

techniques significantly improves key generation, 

signing, and verification. Multi-Prime RSA 

accelerates encryption and decryption, while CRT and 

Sliding Window Exponentiation boost signing and 

verification speeds. SHA-3 hashing strengthens 

protection against forgery. These enhancements make 

RSA signatures more practical for real-time 

applications, including secure transactions and 

blockchain security. Overall, the improved system 
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ensures faster performance without compromising 

RSA's strong security foundation. 

LITERATURE SURVEY 

Digital signatures, particularly RSA-based, are 

essential in ensuring the authenticity, integrity, and 

non-repudiation of digital messages [1]. RSA, a 

widely used public-key cryptosystem, faces 

inefficiencies in key generation, signing, and 

verification, which have led to efforts to optimize 

these processes [2]. Multi-Prime RSA, which uses 

multiple primes instead of two, enhances encryption 

and decryption speed by reducing the size of the 

private exponent [4]. The Chinese Remainder 

Theorem (CRT) accelerates RSA operations by 

dividing them into smaller, parallel computations [5]. 

Sliding Window Exponentiation optimizes signature 

verification by reducing multiplication steps [9], 

while SHA-3 hashing improves message integrity and 

security [6]. Optimized key generation techniques, 

such as dynamic public exponent selection, enhance 

both efficiency and security [7]. These improvements 

make RSA more suitable for large-scale, real-time 

applications like blockchain, secure communications, 

and digital transactions, ensuring both speed and 

robustness in modern cryptography [3]. 

RSA Digital Signature  

RSA digital signatures are a crucial component of 

public-key cryptography, ensuring authentication, 

integrity, and non-repudiation of digital messages or 

documents. The process involves generating a unique 

digital signature by encrypting a message hash with a 

private key. The recipient verifies the signature by 

decrypting it with the sender’s public key and 

comparing it with the independently computed hash 

of the received message. If both hashes match, the 

signature is valid, confirming that the message was 

sent by the claimed sender and was not altered in 

transit. RSA digital signatures are widely used in 

secure communication, software distribution, and 

blockchain applications. 

Multi-Prime RSA 

Multi-Prime RSA is an advanced variant of the 

traditional RSA cryptosystem that enhances security 

and computational efficiency. Instead of using two 

prime numbers to generate the modulus n, Multi-

Prime RSA utilizes three or more primes. This 

approach results in a smaller private exponent d due 

to a larger totient function \phi(n), reducing 

decryption and signing time while maintaining 

security levels. The key advantage is that it allows for 

faster encryption and decryption operations, making 

RSA signatures more efficient, particularly for large-

scale systems that require high-speed cryptographic 

operations. 

 Pseudocode: 

1. Generate three large prime numbers: p, q, r. 

2. Compute modulus: n = p * q * r. 

3. Compute Euler’s totient function:  

             φ(n)=(p-1)*(q-1)*(r-1). 

4. Select a random e such that 1 < e < φ(n)  

and gcd(e,φ(n))  = 1. 

5. Compute private key d as the modular inverse of 

             d=e mod φ(n). 

6. Return the public key (e, n) and  

private key (d, p, q, r). 

 Advantages of Multi-Prime RSA Over 

Traditional RSA 

1. Improved Efficiency: 

Multi-Prime RSA uses three or more primes instead 

of just two, which reduces the size of the private 

exponent. This leads to faster decryption and signing 

processes. 

2. Enhanced Performance with CRT: 

The integration of the Chinese Remainder Theorem 

(CRT) allows RSA calculations to be divided into 

smaller, parallel computations, significantly 

accelerating encryption, decryption, and signing 

operations. This method can improve RSA speed by 

nearly four times. 

3. Faster Verification with Sliding Window 

Exponentiation: 

This technique reduces the number of multiplication 

steps in modular exponentiation, optimizing RSA 

signature verification for real-time applications. 

4. Improved Security with SHA-3 Hashing: 
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SHA-3 provides enhanced protection against collision 

and preimage attacks, ensuring message integrity and 

resistance to forgery. 

5. Optimized Key Generation: 

Using multiple primes in the modulus generation 

process results in faster key generation without 

compromising security. 

6. Greater Suitability for Real-Time 

Applications: 

Due to reduced computational overhead, this                

optimized RSA approach is better suited for secure 

transactions, blockchain security, and other 

applications requiring fast cryptographic operations. 

Chinese  Remainder Theorem(CRT) 

The Chinese Remainder Theorem (CRT) is a 

fundamental mathematical principle used in modular 

arithmetic to solve systems of congruences. In RSA, 

CRT is leveraged to speed up modular exponentiation 

computations, which are a core part of both 

encryption and digital signature generation. By 

breaking a large modular exponentiation problem into 

smaller, parallel computations using the prime factors 

of n, CRT significantly reduces the time complexity 

of operations. This optimization is particularly 

beneficial for decryption and signing, where the 

private key operations are computationally expensive. 

Using CRT, RSA operations become nearly four 

times faster than standard methods. 

     Pseudocode: 

1.Extract private key components (d, p, q,r). 

2.Compute:  d_p = d mod (p-1),  d_q = d mod(q-1),    

d_r=dmod(r-1). 

3.Compute signature parts: s_p = message^d_p mod 

p,  s_q = message^d_q mod q, 

   s_r = message^d_r mod r.  

4.Reconstruct signature using CRT. 

5.Return the final signature. 

Sliding Window Exponentiation 

Sliding Window Exponentiation is an optimization 

technique used to accelerate modular exponentiation, 

which is a critical operation in RSA signature 

verification. Instead of computing powers iteratively, 

this method precomputes a set of small 

exponentiations and then processes the exponent in 

blocks (windows) of bits. By reducing the number of 

multiplications required, this technique enhances the 

efficiency of RSA verification, making it practical for 

real-time cryptographic applications. Sliding Window 

Exponentiation is especially useful when dealing with 

large exponents, as it balances computation speed 

with memory usage to achieve optimal performance. 

Pseudocode: 

1.Convert exponent to binary. 

2.Choose a window size (e.g., 4-bit window). 

3.Precompute small powers of the base modulo n. 

4.Process the exponent in k-bit windows. 

5.Multiply result by precomputed values and perform        

necessary squaring.  

6.Return the final result. 

SHA-3 Hashing 

SHA-3 (Secure Hash Algorithm 3) is a modern 

cryptographic hash function designed to provide high 

security and resistance against collision and preimage 

attacks. In digital signatures, SHA-3 is used to hash 

the original message before it is signed with the 

private key. Hashing ensures that the digital signature 

remains compact and prevents attackers from deriving 

the original message from its signature. Unlike its 

predecessors (SHA-1 and SHA-2), SHA-3 is based on 

the Keccak sponge construction, offering enhanced 

security against vulnerabilities. Its integration into 

RSA digital signatures strengthens data integrity and 

protection against forgery. 

Signature Verification 

 Signature verification is the process of ensuring that 

a received digital signature is authentic and that the 

signed message has not been tampered with. It 

involves decrypting the signature using the sender’s 

public key, which recovers the hash value originally 

computed before signing. The verifier then 

independently hashes the received message and 

compares it with the decrypted hash. If the values 

match, the signature is considered valid, confirming 

that the document originated from a trusted source and 

was not altered. This process is critical in secure 

digital transactions, electronic documents, and 

blockchain-based authentication. Input for 
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verification the digital signature provided document is  

named as: Signature_document.txt 

“Signature document   

This is a test document for digital signature 

verification.” 

Pseudocode: 

1.Extract public key components (e, n). 

2.Compute message hash using SHA-3. 

3.Decrypt the signature using modular exponentiation      

(Sliding Window method). 

4.Compare the decrypted hash with the computed 

message hash. 

5.If they match, the signature is valid 

Public-Key Cryptography 

Public-key cryptography, also known as asymmetric 

cryptography, operates with a pair of keys: a public 

key that is available to everyone and a private key that 

remains confidential. One of the most commonly 

utilized public-key cryptosystems is RSA. Unlike 

symmetric encryption, where both the sender and 

receiver use the same key, public-key cryptography 

allows for secure communication and verification 

even over insecure networks. RSA digital signatures, 

which are based on this cryptographic approach, 

ensure the integrity and authenticity of messages, 

playing a crucial role in secure email, SSL/TLS 

protocols, and blockchain technology.. 

Proposed  Digital Signature Schema Using  

Multi_Prime RSA  

Key generation is a fundamental step in RSA, where 

a secure pair of public and private keys is created. 

Optimized key generation techniques focus on 

improving the efficiency and security of this process. 

Multi-Prime RSA enhances key generation by using 

additional prime factors, reducing computational 

overhead while maintaining strong cryptographic 

properties. Additionally, dynamically selecting the 

public exponent e rather than using a fixed value (such 

as 65537) ensures greater randomness and resistance 

to specific attacks. Optimized key generation is 

essential for large-scale cryptographic applications, 

ensuring that keys are both secure and 

computationally efficient. 

Step 1: Key Generation 

1. Choose Large Prime Numbers: 

Select three large prime numbers: p, q, r 

2. Compute Modulus (n): 

Compute n = p × q × r 

3. Compute Euler’s Totient Function (φ(n)): 

Compute φ(n) = (p-1) × (q-1) × (r-1) 

4. Choose Public Exponent (e): 

Select e such that gcd(e, φ(n)) = 1 

5. Compute Private Key (d): 

Compute d = e^(-1) mod φ(n) 

6. Return Public and Private Keys: 

Public Key: (e, n) 

Private Key: (d, p, q, r) 

Step 2: Signing a Message Using CRT 

1. Choose a Message (M): 

Input message M 

2. Compute Reduced Private Exponents: 

d_p = d mod (p-1) 

d_q = d mod (q-1) 

d_r = d mod (r-1) 

3. Compute Partial Signature 

s_p = M^(d_p) mod p 

s_q = M^(d_q) mod q 

s_r = M^(d_r) mod r 

         4.   Compute Final Signature Using CRT: 

       Solve the following system of congruences: 

S ≡ s_p mod p 

S ≡ s_q mod q 

S ≡ s_r mod r 

5. Return Signature: 

Digital Signature: S 

 

Step 3: SHA-3 Hashing of the Message 

1. Hash the Message: 

Compute H = SHA3(M) 

Step 4: Verifying the Signature Using Sliding 

Window Exponentiation 

1. Convert e to Binary: 

Convert e to binary format 

2. Compute Base Powers: 

Compute base^1 mod n 

Compute base^2 mod n 

Compute base^4 mod n 

3. Compute Final Exponentiation Using Sliding 

Window: 
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Compute result = (base^8 × base^2 × base^1) 

mod n 

4. Verify Hash Values: 

If result == SHA3(M), signature is valid 

Final Results: 

Public Key: (e, n) 

Private Key: (d, p, q, r) 

Message: M 

SHA-3 Hash: H 

Signature: S 

Verified Hash: H 

Multi -prime RSA Algorithm for signing digitally  

Example1: 

Enhanced RSA with Larger Prime Numbers 

Example 

Step 1: Key Generation 

1.1 Choose Large Prime Numbers 

Let's pick three large prime numbers: 

p = 47,q = 59,r = 71 

1.2 Compute Modulus  (n) 

n= p × q × r n = 47 × 59 × 71 = 197243 

1.3 Compute Euler’s Totient Function (φ(n)) 

φ(n) = (p - 1) × (q - 1) × (r - 1)  

φ(n) = (47 - 1) × (59 - 1) × (71 - 1) 

φ(n)   =    46 × 58 × 70 = 186320 

1.4 Choose Public Exponent (e) 

We choose e such that it is coprime with φ(n). 

e = 11 gcd(11, 186320) = 1 (Valid choice) 

1.5 Compute Private Key (d) using Modular Inverse 

d = e^(-1) mod φ(n) d = 11^(-1) mod 186320 = 

169471 

Public Key: (e, n) = (11, 197243)  

Private Key: (d, p, q, r) = (169471, 47, 59, 71) 

Step 2: Signing a Message Using CRT 

2.1 Choose a Message 

M = 45 

2.2 Compute Reduced Private Exponents 

d_p = d mod (p - 1) = 169471 mod 46 = 25 

d_q = d mod (q - 1) = 169471 mod 58 = 7 

d_r = d mod (r - 1) = 169471 mod 70 = 21 

2.3 Compute Partial Signatures 

s_p = M^(d_p) mod p = 45^25 mod 47 = 13 

s_q = M^(d_q) mod q = 45^7 mod 59 = 35 

s_r = M^(d_r) mod r = 45^21 mod 71 = 18 

2.4 Compute Final Signature (S) using CRT 

S ≡ 13 mod 47  

S ≡ 35 mod 59  

S ≡ 18 mod 71 

Using CRT, S = 85679 

Digital Signature: S = 85679 

Step 3: SHA-3 Hashing of the Message 

To enhance security, we hash the message before 

signing. 

For simplicity, assume 

SHA3(45) = 93 

 

Step 4: Verifying the Signature Using Sliding 

Window Exponentiation 

4.1 Convert e to Binary 

11 = (1011)_2 

4.2 Apply Sliding Window Exponentiation 

Compute Base Powers:  

79^1 mod 197243 = 85679 

79^2 mod 197243 = 54221 

79^4 mod 197243 = 158282 

Compute Final Exponentiation: 

85679^11 = 85679^(8+2+1) 

= (85679^8 × 85679^2 × 85679^1) mod 197243 

= (158282 × 54221 × 85679) mod 197243 

= 93 

Since the recovered hash matches the original SHA-3 

hash, the signature is valid. 

Final Results 

Public Key: (11, 197243) 

Private Key: (169471, 47, 59, 71) 

Message: 45 

SHA-3 Hash: 93 

Signature: 85679 

Verified Hash: 93 

Signature is Valid  

RESULTS AND ANALYSIS 

The optimized RSA system effectively improves 

security and performance by combining Multi-Prime 

RSA, CRT, Sliding Window Exponentiation, and 

SHA-3 hashing. Multi-Prime RSA reduces the size of 

the private exponent while ensuring strong 
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encryption, and CRT divides modular calculations 

into smaller steps, improving signing efficiency. 

Sliding Window Exponentiation accelerates signature 

verification by minimizing multiplication steps, and 

SHA-3 hashing enhances resistance against collision 

attacks, strengthening data integrity. These 

optimizations collectively reduce computational 

overhead while retaining robust cryptographic 

security, making the method suitable for secure 

transactions, blockchain applications, and other real-

time cryptographic systems demanding speed and 

reliability. 

CONCLUSIONS 

Optimizing RSA-based digital signatures enhances 

cryptographic efficiency and security for real-time 

applications. Incorporating Multi-Prime RSA, CRT-

based signing, Sliding Window Exponentiation, and 

SHA-3 hashing improves key generation, signing, 

verification, and data integrity. These optimizations 

reduce computational overhead while maintaining 

RSA's security foundation, making it a practical 

choice for modern, high-security environments 

demanding speed and reliability. Overall, this study 

demonstrates that RSA digital signatures can be 

optimized without replacing the fundamental RSA 

framework, ensuring compatibility with existing 

security infrastructures while achieving improved 

performance and cryptographic strength. These 

enhancements make RSA a more viable choice for 

modern, high-security environments that demand 

both speed and reliability. 
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