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INTRODUCTION 

Diabetic patients have increased significantly in 

recent decades, mainly due to the rise in type 2 

diabetes mellitus (T2DM). This trend leads to serious 

health, economic, and social challenges. [1] Treating 

diabetes is expensive, and the annual costs are rising. 

There are many antidiabetic drugs available that can 

be used alone or together. Each drug works 

differently, and its effects can change based on several 

factors, including the dose. Antidiabetic drugs aim to 

control glucose metabolism, primarily by lowering 

blood sugar levels. Consequently, many of these 

drugs may also help treat other conditions, especially 

obesity, which is a key contributor to diabetes mellitus 

(DM). [2] As a result, the variety of available drugs, 

their mechanisms, and biological effects have sparked 

much discussion across different health fields, 

including cardiovascular, kidney, neurological, and 

cancer-related areas. [3] Because diabetes is a 

complex disease, it requires a careful study when 

looking for new treatment targets or understanding 

how medications with potential antidiabetic effects 

work. [4] Furthermore, some, if not all, of these drugs 

can change cellular metabolism in ways that might 

help some organs but harm others. This presents a 

complicated challenge that hinders progress. [5] It has 

been noticed earlier that SGLT2 inhibitors are useful 

for increasing blood pressure, serum triglyceride 

levels, and body weight respectively [6–8]. The 

diabetic population is mostly prone to other factors of 

metabolic syndrome including cardiovascular 

diseases, and a protective role of SGLT2 inhibitors 

has been noticed for such conditions [9-11] 

2. Role in Glycemic Management of Type 2 

Diabetes Mechanism 

SGLT2 cotransporters are located in the early PCT of 

the kidney, where they perform active glucose 
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reabsorption in order to maintain optimum blood 

glucose levels [12]. SGLT2i medications act in an 

insulin-independent manner to selectively inhibit the 

reabsorption of glucose in the kidney and promote 

excretion via the urine [12]. Currently, three SGLT2i 

therapies are available for clinical use in the UK for 

the treatment of T2DM: canagliflozin (distributed in 

the UK by Napp Pharmaceuticals Limited), 

dapagliflozin (AstraZeneca UK Limited) and 

empagliflozin (Boehringer Ingelheim Limited) 

[13,14,15]. From a pharmacological perspective, all 

three therapies are very similar with regard to their 

mechanisms of action, although canagliflozin is 

known to also have affinity for SGLT1 cotransporters 

located in the suggest that this property may be 

important to the enhanced postprandial glucose-

lowering action of canagliflozin 300 mg compared 

with canagliflozin 100 mg [13] intestine and kidneys 

[13]. Phase 3 studies. 

Figure 1: Mechanism of SGLT2 Inhibitor [16] 

3. Heart Failure Epidemiology in Type 2 Diabetes 

Type 2 diabetes mellitus (T2DM) is a complex 

chronic illness that affects many systems throughout 

the body. Recent increases in T2DM parallel the 

increase in the number of people who are obese or 

have sedentary lifestyles. Individuals with T2DM also 

face an increased risk for many different types of 

cardiovascular disease (CVD), with heart failure (HF) 

being more common as an initial diagnosis than 

myocardial infarction (MI) [17]. It has been estimated 

that 9% to 22% of patients with T2DM will have HF; 

this figure is likely higher for individuals over 60 

years of age [18,19,20,21]. Patients with T2DM are at 

increased risk for HF; this risk is close to double that 

for patients without T2DM. Many different factors 

can affect how likely a patient with T2DM will 

develop HF [22]. Disease duration, obesity, 

hypertension, coronary artery disease (CAD), 

peripheral arterial disease (PAD), diabetic 

nephropathy (nephropathy caused by diabetes), 

diabetic retinopathy (retinopathy from diabetes), and 

levels of NT-Probing (an indicator of heart failure) are 

all risk factors that increase the likelihood of 

developing HF in T2DM patients [23,24,25]. 

Additionally, in a study done in Framingham, it was 

observed that the risk for HF was much greater for 

women than for men, with women being five times 

more likely to develop HF when compared to diabetic 

men [26]. Patients with HF are frequently insulin 

resistant, and may experience higher blood glucose 

levels and/or develop diabetes as a result of their HF 

[27]. Many studies have demonstrated that HF is 

common in patients with T2DM; 30%-50% of T2DM 

patients developed diabetes [28,29]. The presence of 

both HF and T2DM has been shown to have a 

negative synergistic effect [30]. 
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4. SGLT2 Inhibitors Improve Cardiac Metabolism 

and Bioenergetics 

SGLT2 inhibitors are thought to improve cardiac 

energy metabolism, and potentially, with improving 

energy utilization and promoting greater efficacy of 

energy and substrate efficiency, SGLT2 inhibitors 

may help to regulate cardiac function by improving 

function and efficiently improving an individual's 

ability to produce cardiac output [31,32]. Diabetes 

and/or heart failure have protein-glucose metabolism 

reductions, including decreased regulatory function of 

metabolic flexibility in glucose and fatty acid use for 

ATP production [31,33]. The dependence on the use 

of NEFA to produce ATP may inadvertently push free 

fatty acid intermediates, which can accumulate and 

cause lip toxicity, reduce calcium accumulation inside 

the sarcoplasmic reticulum through diastolic 

dysfunction, Levitra release rates [33]β 

Hydroxybutyric acid production is slightly increased 

by SGLT2 inhibitors, and thus it is surmised that β 

Hydroxybutyric acid is a more efferent myocardial 

fuel source for those with T1D [31,34]. In addition to 

being used to increase the production of glucagon, 

ketones have been theorized to also utilize a decrease 

or suppression of the production or excretion of 

ketones through the renal route. The premise of the 

theory is that the ‘super fuel’ (as described above) 

produced by the kidney via β Hydroxybutyric acid 

increases the oxidation rate of glucose compared to 

NEFA and glucose, as well as providing a basal 

metabolic substrate for the productivity process of the 

heart through β Hydroxybutyric acid via the means of 

the failing heart [35]. There are currently very few 

strong data sources to provide evidence for this 

proposed theory. Nevertheless, a number of 

preliminary investigations on pigs after the cessation 

of a heart attack have provided some evidence in 

support of the proposed theory by demonstrating that 

the increase in Myocardial Ketone Usage, and a 

decrease in Myocardial Glucose Usage and Lactate 

Production [36]. In addition, the researchers opine 

that the increase in β-Hydroxybutyrate (βOHB) levels 

as a result of additional SGLT2 Inhibitors may be 

inhibiting Histone Deacetylase and blocking 

Transcriptional Networks within the Heart involved 

in Muscle Growth and Hypertrophy, and that an 

inhibition of βOHB Oxidation would result in an 

increase in glucose-derived Acetyl-CoA Oxidation, 

which in turn would improve myocardial metabolic 

pathways. Additionally, a reduction in Acetyl-CoA 

production could prevent Hyperacetylation/ 

Hyperacetylation of the Mitochondrial Enzymes, and 

beneficially affect Mitochondrial Energy Generation 

[40]. Another elegant, Untargeted Metabolomic 

Investigation, suggested that the SGLT2 Inhibitor 

would promote the breakdown of Intermediates of 

Branched Chain Amino Acids (BCAA) into 

alternative fuel sources for a non-functioning 

myocardium. Impaired BCAA breakdown has 

previously been described in Heart Failure; therefore, 

it has been postulated that impaired BCAA usage 

could be contributing to unwanted energy metabolism 

changes in the myocardium [37]. Thus, the above-

mentioned aforementioned findings are very 

interesting, but while there is evidence supporting 

these ideas, to date there has not been sufficient 

evidence to establish a direct relationship between 

myocardial energetic pathways and the beneficial 

effects of SGLT2 Inhibition [38]. 

5. SGLT2 Inhibitor Used in Chronic Kidney 

Disease 

Chronic kidney disease (CKD) can be diagnosed if 

certain criteria last for over three months; these 

criteria are: eGFR < 60 mL/min/1.73 m2 or kidney 

damage markers (of either structural or functional 

nature; one or several): albuminuria (urine excretion 

rate of albumin ≥ 30 mg/24 h; urine albumin-to-

creatinine ratio (UACR) ≥ 30 mg/g [≥ 3 mg/mmol]), 

abnormalities in urine, disorders of renal tubules, and 

both pathological and structural changes in kidneys 

[39,40]. CKD is a widespread disorder that 

substantially contributes to the risk of cardiovascular 

complications, end-stage renal disease (ESRD), and 

death [39,40]. Data from 2021 suggest that the CKD 

prevalence in the USA is 15% (around 37 million 

adults), and the disease is more prevalent among the 

elderly (population aged 65 years or more) as opposed 

to the younger ones and in the non-Hispanic Black 

group as compared to the non-Hispanic White or 

Asian group [41]. CKD often goes unnoticed and not 

only is very little awareness from both the patients and 

doctors’ side. In the ADD-CKD analysis of adults 

with type 2 diabetes (T2D), only 22% of patients with 

stage 3–5 CKD were recognized by their primary care 

physician as having CKD [42]. This fraction went up 

with the worsening of CKD stage, from 18% for stage 
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3, through 53% for stage 4, to 59% for stage 5 CKD 

[4]. More less the same is the case with both parts of 

CKD (i.e., eGFR < 60 mL/min/1.73 m2 and 

UACR ≥ 30 mg/g) being viewed as separate 

independent risk factors for CKD progression, 

development of ESKD and CVD as well as death 

[43,44]. There is still a huge gap in the market for 

more efficacious treatments for chronic kidney 

disease (CKD) that will not only slow down the 

progression of the disease but also prevent the 

development of end-stage kidney disease (ESKD) and 

cardiovascular diseases (CVD) including heart failure 

(HF) as well as prolong the life of CKD patients. In 

the past two decades, angiotensin-converting enzyme 

(ACE) inhibitors and angiotensin receptor blockers 

(ARBs) have been the only drug classes 

recommended for patients with CKD and 

hypertension, whether they have Type 2 diabetes 

(T2D) or not [40]. In the RENAAL (losartan) [45] and 

IDNT (irbesartan) [46] studies involving diabetic 

patients with nephropathy, both ARBs have been 

reported to reduce the risk of the composite renal 

endpoint (i.e., serum creatinine doubling, ESKD, or 

all-cause mortality) by 16% and 20%, respectively, as 

compared to the placebo group. Likewise, ACE 

inhibitors have been found to lower the probability of 

CKD progression among patients with diabetes as 

well as those without diabetes when compared to 

placebo treatment [47,48,49,50]. Further 

investigation on the combined effects of ACE 

inhibitor and ARB or using renin inhibitors has not 

yielded any additional benefits regarding the slowing 

of CKD progression or the trials were abruptly 

stopped due to the severe adverse effects (acute 

kidney injury, renal dysfunction, stroke, and/or 

hyperkalemia) [51,52,53]. Lately, researchers have 

conducted large, randomized, placebo-controlled 

trials to assess the cardiovascular safety of sodium–

glucose cotransporter 2 (SGLT2) inhibitors in type 2 

diabetes patients. The SGLT2 inhibitors not only cut 

down the chances of experiencing cardiovascular 

events dramatically, but they also minimized the 

chances of renal outcomes that are clinically 

meaningful, i.e., sustained loss of kidney function, 

eGFR decline, progression to or worsening of 

albuminuria, new ESKD, death from renal causes, 

and/or a renal composite outcome, when compared 

with placebo. Thus, SGLT2 inhibitors are considered 

to be the safer medicines for treating renal diseases, 

especially in the case of diabetic patients, who are 

more prone to develop kidney diseases, [54,55,56,57]. 

Nevertheless, the aforementioned studies were not 

explicitly aimed at evaluating the treatment 

advantages of CKD patients; only 7–26% of the total 

participants' eGFR was less than 60 mL/min/1.73 m2 

[54,55,56,57]. Afterward, the precise kidney outcome 

trials revealed a significant reduction in the CKD risk 

that was associated with SGLT2 in combination with 

canagliflozin in CREDENCE [58] and dapagliflozin 

in DAPA-CKD [59] for both diabetic and nondiabetic 

kidney disease patients. Moreover, the FIDELIO-

DKD trial focusing on the renal and cardiovascular 

effects of the MRA finer none over a long period of 

time reported less advancement of CKD in patients 

with diabetes-inked renal disease [60]. 

CONCLUSION 

SGLT2 inhibitors are some of the key advances in 

modern pharmacotherapy, initially developed for 

glycemic control in T2DM but later recognized for 

their wide therapeutic benefits beyond diabetes. These 

agents, by inhibiting renal glucose reabsorption in the 

proximal tubules, provide effective glucose-lowering 

without dependence on insulin and with additional 

advantages such as weight reduction and low risk of 

hypoglycemia. Importantly, the cumulative clinical 

evidence has demonstrated substantial 

cardioprotective and Reno protective benefits 

associated with their use: a decrease in hospitalization 

for heart failure, a retardation of the course of chronic 

kidney disease, and an overall reduction in adverse 

cardiovascular events even in nondiabetic subjects. 

These offer other benefits than pure modifications of 

disease. With proper patient selection and monitoring, 

these agents can minimize certain safety concerns, 

including genital infections and rare reports of 

euglycemic ketoacidosis. On the whole, SGLT2 

inhibitors have transformed the management 

paradigm of diabetes, heart failure, and chronic 

kidney disease toward integrated cardio-renal-

metabolic care and underlined their expanding role in 

clinical practice. 
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