View Article

  • Bridging Global Evidence and Local Realities: A Review of Cognitive Impairment in Schizophrenia

  • Department of Humanities and Social Sciences, Sri Ramswaroop Memorial University, Lucknow, India

Abstract

Schizophrenia is a chronic and severe psychiatric disorder that significantly affects cognitive functioning and daily life activities. Cognitive impairment is considered a core feature of schizophrenia and is observed across multiple domains including processing speed, attention, memory, and executive functioning. These deficits are persistent, often present before the onset of psychotic symptoms, and remain relatively stable throughout the course of illness. Cognitive dysfunction plays a crucial role in determining functional outcomes such as social adjustment, occupational performance, and quality of life. Despite advances in pharmacological treatment, cognitive impairments remain inadequately addressed in routine clinical practice. The present paper reviews existing global and regional literature on cognitive impairment in schizophrenia, highlighting affected cognitive domains, underlying neurobiological mechanisms, and clinical implications. The review emphasizes the need for comprehensive treatment approaches that integrate cognitive assessment and rehabilitation to improve functional recovery in individuals with schizophrenia.

Keywords

Schizophrenia, Cognitive Impairment, Processing Speed, Memory, Attention, Executive Function

Introduction

Schizophrenia is a debilitating mental disorder characterized by disturbances in perception, thought processes, emotional expression, and behavior. Although positive symptoms such as hallucinations and delusions are the most visible manifestations of the disorder, cognitive impairment has emerged as one of the most disabling and enduring components. Cognitive deficits are evident across several domains including attention, working memory, episodic memory, processing speed, and executive functioning. Historically, cognitive decline was emphasized in early descriptions of schizophrenia, particularly in Kraepelin’s concept of dementia praecox. Contemporary research supports this view, demonstrating that cognitive impairments are present in first-episode patients, individuals at high risk for psychosis, and even unaffected relatives. Importantly, cognitive dysfunction is a stronger predictor of long-term functional outcome than the severity of positive symptoms, underscoring its clinical significance.

LITERATURE REVIEW

Extensive research has documented generalized and domain-specific cognitive impairments in schizophrenia. Meta-analytic studies consistently report that individuals with schizophrenia perform significantly worse than healthy controls across most cognitive domains. Negative symptoms show a strong association with global cognitive deficits, while certain positive symptoms have been linked with impairments in executive functioning. Pharmacological treatment, including second-generation antipsychotics, has demonstrated only modest benefits for cognition. As a result, international clinical guidelines emphasize the importance of non-pharmacological interventions such as cognitive remediation therapy. Psychosocial factors including social isolation, unemployment, stigma, and reduced environmental stimulation further contribute to cognitive dysfunction, highlighting the interaction between biological and environmental influences.

Processing Speed Deficits in Schizophrenia

Processing speed is among the most consistently impaired cognitive domains in schizophrenia. Individuals with schizophrenia typically demonstrate slower performance on tasks requiring rapid information processing. Neuroimaging studies associate these deficits with abnormalities in white matter integrity and disrupted neural connectivity, particularly involving frontoparietal networks and interhemispheric pathways. Reduced processing speed has been shown to mediate impairments in higher-order cognitive functions such as working memory and executive functioning. Consequently, processing speed deficits are considered a foundational cognitive weakness contributing to broader cognitive dysfunction in schizophrenia.

Memory Deficits in Schizophrenia

A. Working Memory

Working memory impairment is a hallmark feature of schizophrenia and significantly affects problem-solving and goal-directed behavior. Dysfunction of the dorsolateral prefrontal cortex, along with dopaminergic and glutamatergic dysregulation, has been implicated in working memory deficits. Functional neuroimaging studies suggest inefficient or compensatory activation of prefrontal regions during working memory tasks.

B. Episodic Memory

Episodic memory deficits are also prominent and are associated with abnormalities in the hippocampus and medial temporal lobes. Research indicates that encoding processes are particularly impaired, though retrieval deficits are also evident. Cognitive strategies such as deep encoding and structured learning have been shown to partially improve episodic memory performance.

Attention Impairments in Schizophrenia

Attention deficits in schizophrenia include impairments in sustained, selective, and divided attention. Neurobiological evidence points to abnormalities in frontoparietal attention networks and altered connectivity between prefrontal, parietal, and sensory regions. Attention impairments are evident early in the illness and have also been observed in unaffected relatives, suggesting their potential role as vulnerability markers. High rates of nicotine use among individuals with schizophrenia have been linked to transient improvements in attention, prompting interest in nicotinic agents as potential cognitive enhancers, although long-term benefits remain unclear.

DISCUSSION

The reviewed literature highlights cognitive impairment as a central feature of schizophrenia rather than a secondary consequence of psychotic symptoms. Deficits in processing speed appear to underlie impairments in higher-order cognitive functions, while executive dysfunction contributes significantly to poor real-world functioning. Neurobiological findings implicate disrupted brain connectivity, prefrontal cortex dysfunction, and neurotransmitter abnormalities in the pathophysiology of cognitive impairment. Psychosocial factors such as stigma, social withdrawal, and reduced cognitive stimulation further exacerbate these deficits, emphasizing the need for holistic treatment approaches.

 CLINICAL IMPLICATIONS

The findings reviewed in the present paper have important clinical implications for the assessment and management of schizophrenia. Given that cognitive impairment is a core and persistent feature of the disorder, routine clinical evaluation should include standardized cognitive assessments in addition to symptom-based diagnosis. Early identification of cognitive deficits can facilitate timely intervention and prevent further functional decline. Cognitive remediation therapy, psychosocial rehabilitation, and skills training programs have shown promise in improving specific cognitive domains and enhancing real-world functioning. Integrating cognitive-focused interventions with pharmacological treatment may lead to better social and occupational outcomes. Furthermore, psychoeducation for patients and caregivers regarding the nature of cognitive impairment can improve treatment adherence and reduce stigma associated with cognitive difficulties. Mental health services, particularly in low- and middle-income settings, should prioritize accessible and culturally appropriate cognitive rehabilitation programs. Addressing cognitive dysfunction directly may significantly enhance recovery-oriented care in schizophrenia.

FUTURE DIRECTIONS

Future research should focus on longitudinal studies to better understand the trajectory of cognitive impairment across different stages of schizophrenia. Greater emphasis is needed on distinguishing primary cognitive deficits intrinsic to the disorder from secondary impairments influenced by medication effects, comorbid depression, or social deprivation. Advancements in neuroimaging and biomarker research may help identify neural mechanisms underlying specific cognitive deficits, enabling more targeted interventions. Additionally, future studies should examine the effectiveness of digital cognitive training tools and community-based rehabilitation models, particularly in resource-limited settings. Cross-cultural research is also essential to understand how sociocultural and environmental factors influence cognitive functioning and treatment response. Such efforts will contribute to the development of personalized and context-sensitive treatment approaches for individuals with schizophrenia.

CONCLUSION

Cognitive impairment is a core and enduring component of schizophrenia that significantly affects functional outcome and quality of life. Deficits in processing speed, memory, attention, and executive functioning persist across illness stages and are only partially responsive to medication. Comprehensive management of schizophrenia must therefore include systematic cognitive assessment and targeted cognitive rehabilitation to improve long-term outcomes.

REFERENCE

  1. Galderisi, S., Rossi, A., Rocca, P., Bertolino, A., Mucci, A., Bucci, P., Rucci, P., Gibertoni, D., Aguglia, E., Amore, M., Bellomo, A., Biondi, M., Brugnoli, R., Dell’Osso, L., De Ronchi, D., Di Emidio, G., Di Giannantonio, M., Fagiolini, A., Marchesi, C., Monteleone, P., Oldani, L., Pinna, F., Roncone, R., Sacchetti, E., Santonastaso, P., Siracusano, A., Vita, A., Zeppegno, P., Maj, M., Italian Network For Research on Psychoses, 2014. The influence of illness-related variables, personal resources and context-related factors on real-life functioning of people with schizophrenia. World Psychiatry 13, 275–287. https://doi.org/10.1002/wps.20167
  2. Harvey, P.D., Strassnig, M., 2012. Predicting the severity of everyday functional disability in people with schizophrenia: cognitive deficits, functional capacity, symptoms, and health status. World Psychiatry 11, 73–79. https://doi.org/10.1016/ j. wpsyc.2012.05.004
  3. Dong, M., Lu, L., Zhang, L., Zhang, Y.-S., Ng, C.H., Ungvari, G.S., Li, G., Meng, X., Wang, G., Xiang, Y.-T., 2019. Quality of life in schizophrenia: a meta-analysis of comparative studies. Psychiatr. Q. 90, 519–532. https://doi.org/10.1007/s11126- 019-09633-4
  4. Barlati, S., Morena, D., Nibbio, G., Cacciani, P., Corsini, P., Mosca, A., Deste, G., Accardo, V., Turrina, C., Valsecchi, P., Vita, A., 2022b. Internalized stigma among people with schizophrenia: relationship with socio-demographic, clinical and medication-related features. Schizophr. Res. 243, 364–371. https://doi.org/ 10.1016/j.schres.2021.06.007.
  5. Correll, C.U., Ismail, Z., McIntyre, R.S., Rafeyan, R., Thase, M.E., 2022a. Patient Functioning, Life Engagement, and Treatment Goals in Schizophrenia. J. Clin. Psychiatry 83, 42345. https://doi.org/10.4088/JCP.LU21112AH2
  6. Green, M.F., Horan, W.P., Lee, J., 2019. Nonsocial and social cognition in schizophrenia: current evidence and future directions. World Psychiatry 18, 146–161. https://doi. org/10.1002/wps.20624.
  7. Andreasen, N.C., 1997. The evolving concept of schizophrenia: from Kraepelin to the present and future. Schizophr. Res. 28, 105–109.
  8. Harvey, P.D., Bosia, M., Cavallaro, R., Howes, O.D., Kahn, R.S., Leucht, S., Müller, D.R., Penad´es, R., Vita, A., 2022. Cognitive dysfunction in schizophrenia: an expert group paper on the current state of the art. Schizophr. Res. Cogn. 29, 100249 https://doi. org/10.1016/j.scog.2022.100249.
  9. Charernboon, T., Chompookard, P., 2019. Detecting cognitive impairment in patients with schizophrenia with the Addenbrooke’s Cognitive Examination. Asian J. Psychiatry 40, 19–22. https://doi.org/10.1016/j.ajp.2019.01.006
  10. Pinkham, A.E., Harvey, P.D., Penn, D.L., 2018. Social cognition psychometric evaluation: results of the final validation study. Schizophr. Bull. 44, 737–748. https://doi.org/ 10.1093/schbul/sbx117
  11. Bora, E., Lin, A., Wood, S.J., Yung, A.R., McGorry, P.D., Pantelis, C., 2014. Cognitive deficits in youth with familial and clinical high risk to psychosis: a systematic review and meta-analysis. Acta Psychiatr. Scand. 130, 1–15. https://doi.org/10.1111/ acps.12261
  12. Mucci, A., Galderisi, S., Green, M.F., Nuechterlein, K., Rucci, P., Gibertoni, D., Rossi, A., Rocca, P., Bertolino, A., Bucci, P., Hellemann, G., Spisto, M., Palumbo, D., Aguglia, E., Amodeo, G., Amore, M., Bellomo, A., Brugnoli, R., Carpiniello, B., Dell’Osso, L., Di Fabio, F., di Giannantonio, M., Di Lorenzo, G., Marchesi, C., Monteleone, P., Montemagni, C., Oldani, L., Romano, R., Roncone, R., Stratta, P., Tenconi, E., Vita, A., Zeppegno, P., Maj, M., Italian Network for Research on Psychoses, 2018. Familial aggregation of MATRICS consensus cognitive battery scores in a large sample of outpatients with schizophrenia and their unaffected relatives. Psychol. Med. 48, 1359–1366. https://doi.org/10.1017/ S0033291717002902.
  13. Bowie, C.R., Leung, W.W., Reichenberg, A., McClure, M.M., Patterson, T.L., Heaton, R.K., Harvey, P.D., 2008. Predicting schizophrenia patients’ real-world behavior with specific neuropsychological and functional capacity measures. Biol. Psychiatry 63, 505–511. https://doi.org/10.1016/j.biopsych.2007.05.022
  14. McCutcheon, R.A., Keefe, R.S.E., McGuire, P.K., 2023. Cognitive impairment in schizophrenia: aetiology, pathophysiology, and treatment. Mol. Psychiatry 1–17. https://doi.org/10.1038/s41380-023-01949-9.
  15. Contreras, N.A., Lee, S., Tan, E.J., Castle, D.J., Rossell, S.L., 2016. How is cognitive remediation training perceived by people with schizophrenia? A qualitative study examining personal experiences. J. Mental Health 25, 260–266. https://doi.org/ 10.3109/09638237.2016.1167856
  16. Fusar-Poli, P., Deste, G., Smieskova, R., Barlati, S., Yung, A.R., Howes, O., Stieglitz, R.-D., Vita, A., McGuire, P., Borgwardt, S., 2012. Cognitive functioning in prodromal psychosis: a meta-analysis. Arch. Gen. Psychiatry 69, 562–571. https://doi.org/ 10.1001/archgenpsychiatry.2011.1592.
  17. Kirkpatrick, B., 2014. Progress in the Study of Negative Symptoms. Schizophr. Bull. 40, S101–S106. https://doi.org/10.1093/schbul/sbt158.
  18. Rabinowitz, J., Werbeloff, N., Caers, I., Mandel, F.S., Stauffer, V., Menard, F., Kinon, B.J., Kapur, S., 2013. Negative symptoms in schizophrenia – the remarkable impact of inclusion definitions in clinical trials and their consequences. Schizophr. Res., Spec. Sec.: Neg. Sympt. 150, 334–338. https://doi.org/10.1016/j.schres.2013.06.023.
  19. Demyttenaere, K., Leenaerts, N., Acsai, K., Sebe, B., Laszlovszky, I., Barab´ assy, A., ´ Fonticoli, L., Szatmari, ´ B., Earley, W., N´emeth, G., Correll, C.U., 2022. Disentangling the symptoms of schizophrenia: network analysis in acute phase patients and in patients with predominant negative symptoms. Eur. Psychiatry 65, e18. https://doi. org/10.1192/j.eurpsy.2021.2241.
  20. Buchanan, R.W., 2007. Persistent Negative Symptoms in Schizophrenia: an Overview. Schizophr. Bull. 33, 1013–1022. https://doi.org/10.1093/schbul/sbl057
  21. Mosolov, S.N., Yaltonskaya, P.A., 2022. Primary and secondary negative symptoms in schizophrenia. Front. Psychiatry 12, 766692. https://doi.org/10.3389/ fpsyt.2021.766692
  22. Barlati, S., Nibbio, G., Calzavara-Pinton, I., Invernizzi, E., Cadei, L., Lisoni, J., Valsecchi, P., Deste, G., Vita, A., 2022c. Primary and secondary negative symptoms severity and the use of psychiatric care resources in schizophrenia spectrum disorders: a 3-year follow-up longitudinal retrospective study. Schizophr. Res. 250, 31–38. https://doi.org/10.1016/j.schres.2022.10.002.
  23. Obeagu EI, Esimai BN, Ugwu LN, Ramos GF, Adetoye SD, Edupute EC. Neutrophil to Lymphocyte ratio and some cytokines in pateints with schizophrenia after antipsychotic therapy in Southeast, Nigeria. Asian J Med Princ Clin Prac. 2022;5(4):47–52.
  24. Forbes NF, Carrick LA, McIntosh AM, Lawrie SM. Working memory in schizophrenia: a meta-analysis. Psychological Medicine. 2009;39 (6):889–905. doi:10.1017/S0033291708004558
  25. Scala S, Pousada A, Stone WS, et al. Verbal and visual–spatial memory impairment in youth at familial risk for schizophrenia or affective psychosis: a pilot study. Schizophr Res. 2013;144(1–3):122–128. doi: 10.1016/j.schres.2012.11.027
  26. Kalkstein S, Hurford I, Gur RC. Neurocognition in schizophrenia. In: Behavioral Neurobiology of Schizophrenia and Its Treatment. Springer; 2010:373–390.
  27. Coyle JT, Basu A, Benneyworth M, Balu D, Konopaske G. Glutamatergic synaptic dysregulation in schizophrenia: therapeutic implications. In: Novel Antischizophrenia Treatments. Springer; 2012:267–295.
  28. Fourrier C, Singhal G, Baune BT. Neuroinflammation and cognition across psychiatric conditions. CNS Spectr. 2019;24(1):4–15. doi:10.1017/ S1092852918001499
  29. Brown AS. The environment and susceptibility to schizophrenia. Progr Neurobiol. 2011;93(1):23–58. doi: 10.1016/j.pneurobio.2010.09.003
  30. Harvey PD, Strassnig M. Predicting the severity of everyday functional disability in people with schizophrenia: cognitive deficits, functional capacity, symptoms, and health status. World Psychiatry. 2012;11(2):73–79. doi: 10.1016/j.wpsyc.2012.05.004
  31. Reichenberg A. The assessment of neuropsychological functioning in schizophrenia. Dialogues Clin Neurosci. 2010;12(3):383–392. doi:10.31887/ DCNS.2010.12.3/areichenberg
  32. Millier A, Schmidt U, Angermeyer MC, et al. Humanistic burden in schizophrenia: a literature review. J Psychiatr Res. 2014; 54:85–93. doi:10.1016/j.jpsychires.2014.03.021
  33. Au-Yeung, C., Penney, D., Rae, J., Carling, H., Lassman, L., Lepage, M., 2023. The relationship between negative symptoms and MATRICS neurocognitive domains: a meta-analysis and systematic review. Progr. Neuro-Psychopharmacol. Biol. Psychiatry 127, 110833. https://doi.org/10.1016/j.pnpbp.2023.110833
  34. Bora, E., Akdede, B.B., Alptekin, K., 2017a. The relationship between cognitive impairment in schizophrenia and metabolic syndrome: a systematic review and meta-analysis. Psychol. Med. 47, 1030–1040. https://doi.org/10.1017/ S0033291716003366.
  35. Kirschner, M., Aleman, A., Kaiser, S., 2017. Secondary negative symptoms — A review of mechanisms, assessment and treatment. Schizophr. Res., Spec. Sec.: Neg. Sympt. 186, 29–38. https://doi.org/10.1016/j.schres.2016.05.003
  36. Bliksted, V., Videbech, P., Fagerlund, B., Frith, C., 2017. The Effect of Positive Symptoms on Social Cognition in First-Episode Schizophrenia Is Modified by the Presence of Negative Symptoms. Medl. Abbrev. Title: Neuropsychol. 31, 209–219. https://doi. org/10.1037/neu0000309.
  37. Dupuy, M., Abdallah, M., Swendsen, J., N’Kaoua, B., Chanraud, S., Schweitzer, P., Fatseas, M., Serre, F., Barse, E., Auriacombe, M., Misdrahi, D., 2022. Real-time cognitive performance and positive symptom expression in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 272, 415–425. https://doi.org/10.1007/s00406-021- 01296-2.
  38. Maj, M., van Os, J., De Hert, M., Gaebel, W., Galderisi, S., Green, M.F., Guloksuz, S., Harvey, P.D., Jones, P.B., Malaspina, D., McGorry, P., Miettunen, J., Murray, R.M., Nuechterlein, K.H., Peralta, V., Thornicroft, G., van Winkel, R., Ventura, J., 2021. The clinical characterization of the patient with primary psychosis aimed at personalization of management. World Psychiatry 20, 4–33. https://doi.org/ 10.1002/wps.20809.
  39. Vita, A., Gaebel, W., Mucci, A., Sachs, G., Barlati, S., Giordano, G.M., Nibbio, G., Nordentoft, M., Wykes, T., Galderisi, S., 2022a. European Psychiatric Association guidance on treatment of cognitive impairment in schizophrenia. Eur. Psychiatry 65, e57. https://doi.org/10.1192/j.eurpsy.2022.2315.
  40. Leucht, S., Leucht, C., Huhn, M., Chaimani, A., Mavridis, D., Helfer, B., Samara, M., Rabaioli, M., B¨ acher, S., Cipriani, A., Geddes, J.R., Salanti, G., Davis, J.M., 2017. Sixty years of placebo-controlled antipsychotic drug trials in acute schizophrenia: systematic review, bayesian meta-analysis, and meta-regression of efficacy predictors. Am. J. Psychiatry 174, 927–942. https://doi.org/10.1176/appi. ajp.2017.16121358.
  41.  Leucht, S., Schneider-Thoma, J., Burschinski, A., Peter, N., Wang, D., Dong, S., Huhn, M., Nikolakopoulou, A., Salanti, G., Davis, J.M., 2023. Long-term efficacy of antipsychotic drugs in initially acutely ill adults with schizophrenia: systematic review and network meta-analysis. World Psychiatry 22, 315–324. https://doi.org/ 10.1002/wps.21089
  42. Liu, N.H., Daumit, G.L., Dua, T., Aquila, R., Charlson, F., Cuijpers, P., Druss, B., Dudek, K., Freeman, M., Fujii, C., Gaebel, W., Hegerl, U., Levav, I., Munk Laursen, T., Ma, H., Maj, M., Elena Medina-Mora, M., Nordentoft, M., Prabhakaran, D., Pratt, K., Prince, M., Rangaswamy, T., Shiers, D., Susser, E., Thornicroft, G., Wahlbeck, K., Fekadu Wassie, A., Whiteford, H., Saxena, S., 2017. Excess mortality in persons with severe mental disorders: a multilevel intervention framework and priorities for clinical practice, policy and research agendas. World Psychiatry 16, 30–40. https:// doi.org/10.1002/wps.20384.
  43. DeRosse, P., Nitzburg, G.C., Blair, M., Malhotra, A.K., 2018. Dimensional symptom severity and global cognitive function predict subjective quality of life in patients with schizophrenia and healthy adults. Schizophr. Res. 195, 385–390. https://doi. org/10.1016/j.schres.2017.10.018.
  44. D´esam´ericq, G., Schurhoff, F., Meary, A., Szoke, ¨ A., Macquin-Mavier, I., Bachoud-L´evi, A. C., Maison, P., 2014. Long-term neurocognitive effects of antipsychotics in schizophrenia: a network meta-analysis. Eur. J. Clin. Pharmacol. 70, 127–134. https://doi.org/10.1007/s00228-013-1600-y
  45. Hasan, A., Falkai, P., Wobrock, T., Lieberman, J., Glenthoj, B., Gattaz, W.F., Thibaut, F., Moller, ¨ H.-J., 2012. World federation of societies of biological psychiatry (wfsbp) guidelines for biological treatment of schizophrenia, Part 1: update 2012 on the acute treatment of schizophrenia and the management of treatment resistance. World J. Biol. Psychiatry 13, 318–378. https://doi.org/10.3109/ 15622975.2012.696143.
  46. Japanese Society of Neuropsychopharmacology, 2021. Japanese Society of neuropsychopharmacology: “guideline for pharmacological therapy of schizophrenia. Neuropsychopharmacology. Rep. 41, 266–324. https://doi.org/10.1002/ npr2.12193.
  47. Sakurai, H., Yasui-Furukori, N., Suzuki, T., Uchida, H., Baba, H., Watanabe, K., Inada, K., Kikuchi, Y.S., Kikuchi, T., Katsuki, A., Kishida, I., Kato, M., 2021. Pharmacological treatment of schizophrenia: japanese expert consensus. PharmacoPsychiatry 54, 60–67. https://doi.org/10.1055/a-1324-3517.
  48. Swingler, D., 2013. Schizophrenia. South Afr. J. Psychiatry 19, 4.
  49. Allardyce, J., Boydell, J., 2006. Environment and Schizophrenia: review: the Wider Social Environment and Schizophrenia. Schizophrenia Bull. 32, 592–598. https:// doi.org/10.1093/schbul/sbl008
  50. Oshima, I., Mino, Y., Inomata, Y., 2005. Effects of environmental deprivation on negative symptoms of schizophrenia: a nationwide survey in Japan’s psychiatric hospitals. Psychiatry Res. 136, 163–171. https://doi.org/10.1016/j.psychres.2005.06.001.
  51. Thomas, E.C., Snethen, G., Salzer, M.S., 2020. Community participation factors and poor neurocognitive functioning among persons with schizophrenia. Am. J. Orthopsychiatry 90, 90–97. https://doi.org/10.1037/ort0000399.
  52. Duan, Y., Jiang, S., Yin, Z., Wang, S., Gao, J., Yang, M., Chen, C., Fu, H., Wang, C., 2023. Association of social isolation and cognitive performance: a longitudinal study using a four-wave nationwide survey. BMC. Public Health 23, 1409. https://doi.org/ 10.1186/s12889-023-16274-7
  53. Reddy, L.F., Irwin, M.R., Breen, E.C., Reavis, E.A., Green, M.F., 2019. Social exclusion in schizophrenia: psychological and cognitive consequences. J. Psychiatr. Res. 114, 120–125. https://doi.org/10.1016/j.jpsychires.2019.04.010
  54. V´elez-Coto, M., Rute-P´erez, S., P´erez-García, M., Caracuel, A., 2021. Unemployment and general cognitive ability: a review and meta-analysis. J. Econ. Psychol. 87, 102430 https://doi.org/10.1016/j.joep.2021.102430.
  55. Zainal NH and Newman MG. Life satisfaction prevents decline in working memory, spatial cognition, and processing speed: latent change score analyses across 23 years. Eur Psychiatry 2022; 65: 1–55.
  56. Dickinson D, Ramsey ME and Gold JM. Overlooking the obvious: a meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Arch Gen Psychiatry 2007; 64: 532–542.
  57. Miller DJ, Duka T, Stimpson CD, et al. Prolonged myelination in human neocortical evolution. Proc Natl Acad Sci USA 2012; 109: 16480–16485.
  58. Thuaire F, Rondepierre F, Vallet GT, et al. Executive deficits in schizophrenia: mediation by processing speed and its relationships with aging. Psychol Med 2022; 52: 1126–1134
  59. Friston KJ and Frith CD. Schizophrenia: a disconnection syndrome? Clin Neurosci (New York, NY) 1995; 3: 89–97
  60. Schlösser RG, Nenadic I, Wagner G, et al. White matter abnormalities and brain activation in schizophrenia: a combined DTI and fMRI study. Schizophr Res 2007; 89: 1–11.
  61. Ellison-Wright I and Bullmore E. Metaanalysis of diffusion tensor imaging studies in schizophrenia. Schizophr Res 2009; 108: 3–10
  62. Guo W, Liu F, Liu Z, et al. Right lateralized white matter abnormalities in first-episode, drugnaive paranoid schizophrenia. Neurosci Lett 2012; 531: 5–9.
  63. Kochunov P, Rowland LM, Fieremans E, et al. Diffusion-weighted imaging uncovers likely sources of processing-speed deficits in schizophrenia. Proc Natl Acad Sci USA 2016; 113: 13504–13509.
  64. Kieseppä T, Mäntylä R, Tuulio-Henriksson A, et al. White matter hyperintensities and cognitive performance in adult patients with bipolar I, bipolar II, and major depressive disorders. Eur Psychiatry 2014; 29: 226–232.
  65. Shimony JS, Sheline YI, D’Angelo G, et al. Diffuse microstructural abnormalities of normalappearing white matter in late life depression: a diffusion tensor imaging study. Biol Psychiatry 2009; 66: 245–252.
  66. Yeh YC, Tsang HY, Lin PY, et al. Subtypes of mild cognitive impairment among the elderly with major depressive disorder in remission. Am J Geriatric Psychiatry 2011; 19: 923–931
  67. Moreines JL, McClintock SM, Kelley ME, et al. Neuropsychological function before and after subcallosal cingulate deep brain stimulation in patients with treatment-resistant depression. Depression Anxiety 2014; 31: 690–698.
  68. Oberlin LE, Respino M, Victoria L, et al. Latelife depression accentuates cognitive weaknesses in older adults with small vessel disease. Neuropsychopharmacology 2022; 47: 580–587.
  69. Respino M, Jaywant A, Kuceyeski A, et al. The impact of white matter hyperintensities on the structural connectome in late-life depression: relationship to executive functions. NeuroImage Clin 2019; 23: 101852.
  70. Mettenburg JM, Benzinger TL, Shimony JS, et al. Diminished performance on neuropsychological testing in late life depression is correlated with microstructural white matter abnormalities. NeuroImage 2012; 60: 2182–2190.
  71. Taylor WD, Aizenstein HJ and Alexopoulos GS. The vascular depression hypothesis: mechanisms linking vascular disease with depression. Mol Psychiatry 2013; 18: 963–974.
  72. Shimamura A. Working memory by Alan Baddeley. Trends Neurosci 1987; 10: 532–533
  73. Slifstein M, van de Giessen E, Van Snellenberg J, et al. Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: a positron emission tomographic functional magnetic resonance imaging study. JAMA Psychiatry 2015; 72: 316–324
  74. Hoy KE, Emonson MR, Arnold SL, et al. Testing the limits: investigating the effect of tDCS dose on working memory enhancement in healthy controls. Neuropsychologia 2013; 51: 1777–1784.
  75. Van Snellenberg JX, Torres IJ and Thornton AE. Functional neuroimaging of working memory in schizophrenia: task performance as a moderating variable. Neuropsychology 2006; 20: 497–510.
  76. Meyer-Lindenberg AS, Olsen RK, Kohn PD, et al. Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Arch Gen Psychiatry 2005; 62: 379–386.
  77. Deserno L, Sterzer P, Wüstenberg T, et al. Reduced prefrontal-parietal effective connectivity and working memory deficits in schizophrenia. J Neurosci 2012; 32: 12–20
  78. Arnsten AF. Catecholamine influences on dorsolateral prefrontal cortical networks. Biol Psychiatry 2011; 69: e89–99
  79. Repovš G and Barch DM. Working memory related brain network connectivity in individuals with schizophrenia and their siblings. Front Human Neurosci 2012; 6: 137.
  80. Kaminski J, Gleich T, Fukuda Y, et al. Association of cortical glutamate and working memory activation in patients with schizophrenia: a multimodal proton magnetic resonance spectroscopy and functional magnetic resonance imaging study. Biol Psychiatry 2020; 87: 225–233.
  81. Wheeler M. Episodic and autobiographical memory: psychological and neural aspects. Int Encycl Social Behav Sci 2001: 4714–4717.
  82. Ragland JD, Ranganath C, Harms MP, et al. Functional and neuroanatomic specificity of episodic memory dysfunction in schizophrenia: a functional magnetic resonance imaging study of the relational and item-specific encoding task. JAMA Psychiatry 2015; 72: 909–916.
  83. Weiss AP, Schacter DL, Goff DC, et al. Impaired hippocampal recruitment during normal modulation of memory performance in schizophrenia. Biol Psychiatry 2003; 53: 48–55.
  84. Ragland JD, Gur RC, Valdez J, et al. Eventrelated fMRI of frontotemporal activity during word encoding and recognition in schizophrenia. Am J Psychiatry 2004; 161: 1004–1015.
  85. Brébion G, Amador X, Smith MJ, et al. Mechanisms underlying memory impairment in schizophrenia. Psychol Med 1997; 27: 383–393.
  86. Nohara S, Suzuki M, Kurachi M, et al. Neural correlates of memory organization deficits in schizophrenia. A single photon emission computed tomography study with 99mTc-ethylcysteinate dimer during a verbal learning task. Schizophr Res 2000; 42: 209–222.
  87. Dugré JR, Dumais A, Tikasz A, et al. Functional connectivity abnormalities of the long-axis hippocampal subregions in schizophrenia during episodic memory. NPJ Schizophr 2021; 7: 19.
  88. Wang B, Pan T, Guo M, et al. Abnormal dynamic reconfiguration of the large-scale functional network in schizophrenia during the episodic memory task. Cereb Cortex (New York, NY : 1991) 2023; 33: 4135–4144.
  89. Nobre AC, Sebestyen GN, Gitelman DR, et al. Functional localization of the system for visuospatial attention using positron emission tomography. Brain 1997; 120: 515–533.
  90. Fan J, Gan J, Liu W, et al. Resting-state default mode network related functional connectivity is associated with sustained attention deficits in schizophrenia and obsessive-compulsive disorder. Front Behav Neurosci 2018; 12: 319.
  91. Arkin SC, Ruiz-Betancourt D, Jamerson EC, et al. Deficits and compensation: attentional control cortical networks in schizophrenia. NeuroImage Clin 2020; 27: 102348.

Reference

  1. Galderisi, S., Rossi, A., Rocca, P., Bertolino, A., Mucci, A., Bucci, P., Rucci, P., Gibertoni, D., Aguglia, E., Amore, M., Bellomo, A., Biondi, M., Brugnoli, R., Dell’Osso, L., De Ronchi, D., Di Emidio, G., Di Giannantonio, M., Fagiolini, A., Marchesi, C., Monteleone, P., Oldani, L., Pinna, F., Roncone, R., Sacchetti, E., Santonastaso, P., Siracusano, A., Vita, A., Zeppegno, P., Maj, M., Italian Network For Research on Psychoses, 2014. The influence of illness-related variables, personal resources and context-related factors on real-life functioning of people with schizophrenia. World Psychiatry 13, 275–287. https://doi.org/10.1002/wps.20167
  2. Harvey, P.D., Strassnig, M., 2012. Predicting the severity of everyday functional disability in people with schizophrenia: cognitive deficits, functional capacity, symptoms, and health status. World Psychiatry 11, 73–79. https://doi.org/10.1016/ j. wpsyc.2012.05.004
  3. Dong, M., Lu, L., Zhang, L., Zhang, Y.-S., Ng, C.H., Ungvari, G.S., Li, G., Meng, X., Wang, G., Xiang, Y.-T., 2019. Quality of life in schizophrenia: a meta-analysis of comparative studies. Psychiatr. Q. 90, 519–532. https://doi.org/10.1007/s11126- 019-09633-4
  4. Barlati, S., Morena, D., Nibbio, G., Cacciani, P., Corsini, P., Mosca, A., Deste, G., Accardo, V., Turrina, C., Valsecchi, P., Vita, A., 2022b. Internalized stigma among people with schizophrenia: relationship with socio-demographic, clinical and medication-related features. Schizophr. Res. 243, 364–371. https://doi.org/ 10.1016/j.schres.2021.06.007.
  5. Correll, C.U., Ismail, Z., McIntyre, R.S., Rafeyan, R., Thase, M.E., 2022a. Patient Functioning, Life Engagement, and Treatment Goals in Schizophrenia. J. Clin. Psychiatry 83, 42345. https://doi.org/10.4088/JCP.LU21112AH2
  6. Green, M.F., Horan, W.P., Lee, J., 2019. Nonsocial and social cognition in schizophrenia: current evidence and future directions. World Psychiatry 18, 146–161. https://doi. org/10.1002/wps.20624.
  7. Andreasen, N.C., 1997. The evolving concept of schizophrenia: from Kraepelin to the present and future. Schizophr. Res. 28, 105–109.
  8. Harvey, P.D., Bosia, M., Cavallaro, R., Howes, O.D., Kahn, R.S., Leucht, S., Müller, D.R., Penad´es, R., Vita, A., 2022. Cognitive dysfunction in schizophrenia: an expert group paper on the current state of the art. Schizophr. Res. Cogn. 29, 100249 https://doi. org/10.1016/j.scog.2022.100249.
  9. Charernboon, T., Chompookard, P., 2019. Detecting cognitive impairment in patients with schizophrenia with the Addenbrooke’s Cognitive Examination. Asian J. Psychiatry 40, 19–22. https://doi.org/10.1016/j.ajp.2019.01.006
  10. Pinkham, A.E., Harvey, P.D., Penn, D.L., 2018. Social cognition psychometric evaluation: results of the final validation study. Schizophr. Bull. 44, 737–748. https://doi.org/ 10.1093/schbul/sbx117
  11. Bora, E., Lin, A., Wood, S.J., Yung, A.R., McGorry, P.D., Pantelis, C., 2014. Cognitive deficits in youth with familial and clinical high risk to psychosis: a systematic review and meta-analysis. Acta Psychiatr. Scand. 130, 1–15. https://doi.org/10.1111/ acps.12261
  12. Mucci, A., Galderisi, S., Green, M.F., Nuechterlein, K., Rucci, P., Gibertoni, D., Rossi, A., Rocca, P., Bertolino, A., Bucci, P., Hellemann, G., Spisto, M., Palumbo, D., Aguglia, E., Amodeo, G., Amore, M., Bellomo, A., Brugnoli, R., Carpiniello, B., Dell’Osso, L., Di Fabio, F., di Giannantonio, M., Di Lorenzo, G., Marchesi, C., Monteleone, P., Montemagni, C., Oldani, L., Romano, R., Roncone, R., Stratta, P., Tenconi, E., Vita, A., Zeppegno, P., Maj, M., Italian Network for Research on Psychoses, 2018. Familial aggregation of MATRICS consensus cognitive battery scores in a large sample of outpatients with schizophrenia and their unaffected relatives. Psychol. Med. 48, 1359–1366. https://doi.org/10.1017/ S0033291717002902.
  13. Bowie, C.R., Leung, W.W., Reichenberg, A., McClure, M.M., Patterson, T.L., Heaton, R.K., Harvey, P.D., 2008. Predicting schizophrenia patients’ real-world behavior with specific neuropsychological and functional capacity measures. Biol. Psychiatry 63, 505–511. https://doi.org/10.1016/j.biopsych.2007.05.022
  14. McCutcheon, R.A., Keefe, R.S.E., McGuire, P.K., 2023. Cognitive impairment in schizophrenia: aetiology, pathophysiology, and treatment. Mol. Psychiatry 1–17. https://doi.org/10.1038/s41380-023-01949-9.
  15. Contreras, N.A., Lee, S., Tan, E.J., Castle, D.J., Rossell, S.L., 2016. How is cognitive remediation training perceived by people with schizophrenia? A qualitative study examining personal experiences. J. Mental Health 25, 260–266. https://doi.org/ 10.3109/09638237.2016.1167856
  16. Fusar-Poli, P., Deste, G., Smieskova, R., Barlati, S., Yung, A.R., Howes, O., Stieglitz, R.-D., Vita, A., McGuire, P., Borgwardt, S., 2012. Cognitive functioning in prodromal psychosis: a meta-analysis. Arch. Gen. Psychiatry 69, 562–571. https://doi.org/ 10.1001/archgenpsychiatry.2011.1592.
  17. Kirkpatrick, B., 2014. Progress in the Study of Negative Symptoms. Schizophr. Bull. 40, S101–S106. https://doi.org/10.1093/schbul/sbt158.
  18. Rabinowitz, J., Werbeloff, N., Caers, I., Mandel, F.S., Stauffer, V., Menard, F., Kinon, B.J., Kapur, S., 2013. Negative symptoms in schizophrenia – the remarkable impact of inclusion definitions in clinical trials and their consequences. Schizophr. Res., Spec. Sec.: Neg. Sympt. 150, 334–338. https://doi.org/10.1016/j.schres.2013.06.023.
  19. Demyttenaere, K., Leenaerts, N., Acsai, K., Sebe, B., Laszlovszky, I., Barab´ assy, A., ´ Fonticoli, L., Szatmari, ´ B., Earley, W., N´emeth, G., Correll, C.U., 2022. Disentangling the symptoms of schizophrenia: network analysis in acute phase patients and in patients with predominant negative symptoms. Eur. Psychiatry 65, e18. https://doi. org/10.1192/j.eurpsy.2021.2241.
  20. Buchanan, R.W., 2007. Persistent Negative Symptoms in Schizophrenia: an Overview. Schizophr. Bull. 33, 1013–1022. https://doi.org/10.1093/schbul/sbl057
  21. Mosolov, S.N., Yaltonskaya, P.A., 2022. Primary and secondary negative symptoms in schizophrenia. Front. Psychiatry 12, 766692. https://doi.org/10.3389/ fpsyt.2021.766692
  22. Barlati, S., Nibbio, G., Calzavara-Pinton, I., Invernizzi, E., Cadei, L., Lisoni, J., Valsecchi, P., Deste, G., Vita, A., 2022c. Primary and secondary negative symptoms severity and the use of psychiatric care resources in schizophrenia spectrum disorders: a 3-year follow-up longitudinal retrospective study. Schizophr. Res. 250, 31–38. https://doi.org/10.1016/j.schres.2022.10.002.
  23. Obeagu EI, Esimai BN, Ugwu LN, Ramos GF, Adetoye SD, Edupute EC. Neutrophil to Lymphocyte ratio and some cytokines in pateints with schizophrenia after antipsychotic therapy in Southeast, Nigeria. Asian J Med Princ Clin Prac. 2022;5(4):47–52.
  24. Forbes NF, Carrick LA, McIntosh AM, Lawrie SM. Working memory in schizophrenia: a meta-analysis. Psychological Medicine. 2009;39 (6):889–905. doi:10.1017/S0033291708004558
  25. Scala S, Pousada A, Stone WS, et al. Verbal and visual–spatial memory impairment in youth at familial risk for schizophrenia or affective psychosis: a pilot study. Schizophr Res. 2013;144(1–3):122–128. doi: 10.1016/j.schres.2012.11.027
  26. Kalkstein S, Hurford I, Gur RC. Neurocognition in schizophrenia. In: Behavioral Neurobiology of Schizophrenia and Its Treatment. Springer; 2010:373–390.
  27. Coyle JT, Basu A, Benneyworth M, Balu D, Konopaske G. Glutamatergic synaptic dysregulation in schizophrenia: therapeutic implications. In: Novel Antischizophrenia Treatments. Springer; 2012:267–295.
  28. Fourrier C, Singhal G, Baune BT. Neuroinflammation and cognition across psychiatric conditions. CNS Spectr. 2019;24(1):4–15. doi:10.1017/ S1092852918001499
  29. Brown AS. The environment and susceptibility to schizophrenia. Progr Neurobiol. 2011;93(1):23–58. doi: 10.1016/j.pneurobio.2010.09.003
  30. Harvey PD, Strassnig M. Predicting the severity of everyday functional disability in people with schizophrenia: cognitive deficits, functional capacity, symptoms, and health status. World Psychiatry. 2012;11(2):73–79. doi: 10.1016/j.wpsyc.2012.05.004
  31. Reichenberg A. The assessment of neuropsychological functioning in schizophrenia. Dialogues Clin Neurosci. 2010;12(3):383–392. doi:10.31887/ DCNS.2010.12.3/areichenberg
  32. Millier A, Schmidt U, Angermeyer MC, et al. Humanistic burden in schizophrenia: a literature review. J Psychiatr Res. 2014; 54:85–93. doi:10.1016/j.jpsychires.2014.03.021
  33. Au-Yeung, C., Penney, D., Rae, J., Carling, H., Lassman, L., Lepage, M., 2023. The relationship between negative symptoms and MATRICS neurocognitive domains: a meta-analysis and systematic review. Progr. Neuro-Psychopharmacol. Biol. Psychiatry 127, 110833. https://doi.org/10.1016/j.pnpbp.2023.110833
  34. Bora, E., Akdede, B.B., Alptekin, K., 2017a. The relationship between cognitive impairment in schizophrenia and metabolic syndrome: a systematic review and meta-analysis. Psychol. Med. 47, 1030–1040. https://doi.org/10.1017/ S0033291716003366.
  35. Kirschner, M., Aleman, A., Kaiser, S., 2017. Secondary negative symptoms — A review of mechanisms, assessment and treatment. Schizophr. Res., Spec. Sec.: Neg. Sympt. 186, 29–38. https://doi.org/10.1016/j.schres.2016.05.003
  36. Bliksted, V., Videbech, P., Fagerlund, B., Frith, C., 2017. The Effect of Positive Symptoms on Social Cognition in First-Episode Schizophrenia Is Modified by the Presence of Negative Symptoms. Medl. Abbrev. Title: Neuropsychol. 31, 209–219. https://doi. org/10.1037/neu0000309.
  37. Dupuy, M., Abdallah, M., Swendsen, J., N’Kaoua, B., Chanraud, S., Schweitzer, P., Fatseas, M., Serre, F., Barse, E., Auriacombe, M., Misdrahi, D., 2022. Real-time cognitive performance and positive symptom expression in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 272, 415–425. https://doi.org/10.1007/s00406-021- 01296-2.
  38. Maj, M., van Os, J., De Hert, M., Gaebel, W., Galderisi, S., Green, M.F., Guloksuz, S., Harvey, P.D., Jones, P.B., Malaspina, D., McGorry, P., Miettunen, J., Murray, R.M., Nuechterlein, K.H., Peralta, V., Thornicroft, G., van Winkel, R., Ventura, J., 2021. The clinical characterization of the patient with primary psychosis aimed at personalization of management. World Psychiatry 20, 4–33. https://doi.org/ 10.1002/wps.20809.
  39. Vita, A., Gaebel, W., Mucci, A., Sachs, G., Barlati, S., Giordano, G.M., Nibbio, G., Nordentoft, M., Wykes, T., Galderisi, S., 2022a. European Psychiatric Association guidance on treatment of cognitive impairment in schizophrenia. Eur. Psychiatry 65, e57. https://doi.org/10.1192/j.eurpsy.2022.2315.
  40. Leucht, S., Leucht, C., Huhn, M., Chaimani, A., Mavridis, D., Helfer, B., Samara, M., Rabaioli, M., B¨ acher, S., Cipriani, A., Geddes, J.R., Salanti, G., Davis, J.M., 2017. Sixty years of placebo-controlled antipsychotic drug trials in acute schizophrenia: systematic review, bayesian meta-analysis, and meta-regression of efficacy predictors. Am. J. Psychiatry 174, 927–942. https://doi.org/10.1176/appi. ajp.2017.16121358.
  41.  Leucht, S., Schneider-Thoma, J., Burschinski, A., Peter, N., Wang, D., Dong, S., Huhn, M., Nikolakopoulou, A., Salanti, G., Davis, J.M., 2023. Long-term efficacy of antipsychotic drugs in initially acutely ill adults with schizophrenia: systematic review and network meta-analysis. World Psychiatry 22, 315–324. https://doi.org/ 10.1002/wps.21089
  42. Liu, N.H., Daumit, G.L., Dua, T., Aquila, R., Charlson, F., Cuijpers, P., Druss, B., Dudek, K., Freeman, M., Fujii, C., Gaebel, W., Hegerl, U., Levav, I., Munk Laursen, T., Ma, H., Maj, M., Elena Medina-Mora, M., Nordentoft, M., Prabhakaran, D., Pratt, K., Prince, M., Rangaswamy, T., Shiers, D., Susser, E., Thornicroft, G., Wahlbeck, K., Fekadu Wassie, A., Whiteford, H., Saxena, S., 2017. Excess mortality in persons with severe mental disorders: a multilevel intervention framework and priorities for clinical practice, policy and research agendas. World Psychiatry 16, 30–40. https:// doi.org/10.1002/wps.20384.
  43. DeRosse, P., Nitzburg, G.C., Blair, M., Malhotra, A.K., 2018. Dimensional symptom severity and global cognitive function predict subjective quality of life in patients with schizophrenia and healthy adults. Schizophr. Res. 195, 385–390. https://doi. org/10.1016/j.schres.2017.10.018.
  44. D´esam´ericq, G., Schurhoff, F., Meary, A., Szoke, ¨ A., Macquin-Mavier, I., Bachoud-L´evi, A. C., Maison, P., 2014. Long-term neurocognitive effects of antipsychotics in schizophrenia: a network meta-analysis. Eur. J. Clin. Pharmacol. 70, 127–134. https://doi.org/10.1007/s00228-013-1600-y
  45. Hasan, A., Falkai, P., Wobrock, T., Lieberman, J., Glenthoj, B., Gattaz, W.F., Thibaut, F., Moller, ¨ H.-J., 2012. World federation of societies of biological psychiatry (wfsbp) guidelines for biological treatment of schizophrenia, Part 1: update 2012 on the acute treatment of schizophrenia and the management of treatment resistance. World J. Biol. Psychiatry 13, 318–378. https://doi.org/10.3109/ 15622975.2012.696143.
  46. Japanese Society of Neuropsychopharmacology, 2021. Japanese Society of neuropsychopharmacology: “guideline for pharmacological therapy of schizophrenia. Neuropsychopharmacology. Rep. 41, 266–324. https://doi.org/10.1002/ npr2.12193.
  47. Sakurai, H., Yasui-Furukori, N., Suzuki, T., Uchida, H., Baba, H., Watanabe, K., Inada, K., Kikuchi, Y.S., Kikuchi, T., Katsuki, A., Kishida, I., Kato, M., 2021. Pharmacological treatment of schizophrenia: japanese expert consensus. PharmacoPsychiatry 54, 60–67. https://doi.org/10.1055/a-1324-3517.
  48. Swingler, D., 2013. Schizophrenia. South Afr. J. Psychiatry 19, 4.
  49. Allardyce, J., Boydell, J., 2006. Environment and Schizophrenia: review: the Wider Social Environment and Schizophrenia. Schizophrenia Bull. 32, 592–598. https:// doi.org/10.1093/schbul/sbl008
  50. Oshima, I., Mino, Y., Inomata, Y., 2005. Effects of environmental deprivation on negative symptoms of schizophrenia: a nationwide survey in Japan’s psychiatric hospitals. Psychiatry Res. 136, 163–171. https://doi.org/10.1016/j.psychres.2005.06.001.
  51. Thomas, E.C., Snethen, G., Salzer, M.S., 2020. Community participation factors and poor neurocognitive functioning among persons with schizophrenia. Am. J. Orthopsychiatry 90, 90–97. https://doi.org/10.1037/ort0000399.
  52. Duan, Y., Jiang, S., Yin, Z., Wang, S., Gao, J., Yang, M., Chen, C., Fu, H., Wang, C., 2023. Association of social isolation and cognitive performance: a longitudinal study using a four-wave nationwide survey. BMC. Public Health 23, 1409. https://doi.org/ 10.1186/s12889-023-16274-7
  53. Reddy, L.F., Irwin, M.R., Breen, E.C., Reavis, E.A., Green, M.F., 2019. Social exclusion in schizophrenia: psychological and cognitive consequences. J. Psychiatr. Res. 114, 120–125. https://doi.org/10.1016/j.jpsychires.2019.04.010
  54. V´elez-Coto, M., Rute-P´erez, S., P´erez-García, M., Caracuel, A., 2021. Unemployment and general cognitive ability: a review and meta-analysis. J. Econ. Psychol. 87, 102430 https://doi.org/10.1016/j.joep.2021.102430.
  55. Zainal NH and Newman MG. Life satisfaction prevents decline in working memory, spatial cognition, and processing speed: latent change score analyses across 23 years. Eur Psychiatry 2022; 65: 1–55.
  56. Dickinson D, Ramsey ME and Gold JM. Overlooking the obvious: a meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Arch Gen Psychiatry 2007; 64: 532–542.
  57. Miller DJ, Duka T, Stimpson CD, et al. Prolonged myelination in human neocortical evolution. Proc Natl Acad Sci USA 2012; 109: 16480–16485.
  58. Thuaire F, Rondepierre F, Vallet GT, et al. Executive deficits in schizophrenia: mediation by processing speed and its relationships with aging. Psychol Med 2022; 52: 1126–1134
  59. Friston KJ and Frith CD. Schizophrenia: a disconnection syndrome? Clin Neurosci (New York, NY) 1995; 3: 89–97
  60. Schlösser RG, Nenadic I, Wagner G, et al. White matter abnormalities and brain activation in schizophrenia: a combined DTI and fMRI study. Schizophr Res 2007; 89: 1–11.
  61. Ellison-Wright I and Bullmore E. Metaanalysis of diffusion tensor imaging studies in schizophrenia. Schizophr Res 2009; 108: 3–10
  62. Guo W, Liu F, Liu Z, et al. Right lateralized white matter abnormalities in first-episode, drugnaive paranoid schizophrenia. Neurosci Lett 2012; 531: 5–9.
  63. Kochunov P, Rowland LM, Fieremans E, et al. Diffusion-weighted imaging uncovers likely sources of processing-speed deficits in schizophrenia. Proc Natl Acad Sci USA 2016; 113: 13504–13509.
  64. Kieseppä T, Mäntylä R, Tuulio-Henriksson A, et al. White matter hyperintensities and cognitive performance in adult patients with bipolar I, bipolar II, and major depressive disorders. Eur Psychiatry 2014; 29: 226–232.
  65. Shimony JS, Sheline YI, D’Angelo G, et al. Diffuse microstructural abnormalities of normalappearing white matter in late life depression: a diffusion tensor imaging study. Biol Psychiatry 2009; 66: 245–252.
  66. Yeh YC, Tsang HY, Lin PY, et al. Subtypes of mild cognitive impairment among the elderly with major depressive disorder in remission. Am J Geriatric Psychiatry 2011; 19: 923–931
  67. Moreines JL, McClintock SM, Kelley ME, et al. Neuropsychological function before and after subcallosal cingulate deep brain stimulation in patients with treatment-resistant depression. Depression Anxiety 2014; 31: 690–698.
  68. Oberlin LE, Respino M, Victoria L, et al. Latelife depression accentuates cognitive weaknesses in older adults with small vessel disease. Neuropsychopharmacology 2022; 47: 580–587.
  69. Respino M, Jaywant A, Kuceyeski A, et al. The impact of white matter hyperintensities on the structural connectome in late-life depression: relationship to executive functions. NeuroImage Clin 2019; 23: 101852.
  70. Mettenburg JM, Benzinger TL, Shimony JS, et al. Diminished performance on neuropsychological testing in late life depression is correlated with microstructural white matter abnormalities. NeuroImage 2012; 60: 2182–2190.
  71. Taylor WD, Aizenstein HJ and Alexopoulos GS. The vascular depression hypothesis: mechanisms linking vascular disease with depression. Mol Psychiatry 2013; 18: 963–974.
  72. Shimamura A. Working memory by Alan Baddeley. Trends Neurosci 1987; 10: 532–533
  73. Slifstein M, van de Giessen E, Van Snellenberg J, et al. Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: a positron emission tomographic functional magnetic resonance imaging study. JAMA Psychiatry 2015; 72: 316–324
  74. Hoy KE, Emonson MR, Arnold SL, et al. Testing the limits: investigating the effect of tDCS dose on working memory enhancement in healthy controls. Neuropsychologia 2013; 51: 1777–1784.
  75. Van Snellenberg JX, Torres IJ and Thornton AE. Functional neuroimaging of working memory in schizophrenia: task performance as a moderating variable. Neuropsychology 2006; 20: 497–510.
  76. Meyer-Lindenberg AS, Olsen RK, Kohn PD, et al. Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Arch Gen Psychiatry 2005; 62: 379–386.
  77. Deserno L, Sterzer P, Wüstenberg T, et al. Reduced prefrontal-parietal effective connectivity and working memory deficits in schizophrenia. J Neurosci 2012; 32: 12–20
  78. Arnsten AF. Catecholamine influences on dorsolateral prefrontal cortical networks. Biol Psychiatry 2011; 69: e89–99
  79. Repovš G and Barch DM. Working memory related brain network connectivity in individuals with schizophrenia and their siblings. Front Human Neurosci 2012; 6: 137.
  80. Kaminski J, Gleich T, Fukuda Y, et al. Association of cortical glutamate and working memory activation in patients with schizophrenia: a multimodal proton magnetic resonance spectroscopy and functional magnetic resonance imaging study. Biol Psychiatry 2020; 87: 225–233.
  81. Wheeler M. Episodic and autobiographical memory: psychological and neural aspects. Int Encycl Social Behav Sci 2001: 4714–4717.
  82. Ragland JD, Ranganath C, Harms MP, et al. Functional and neuroanatomic specificity of episodic memory dysfunction in schizophrenia: a functional magnetic resonance imaging study of the relational and item-specific encoding task. JAMA Psychiatry 2015; 72: 909–916.
  83. Weiss AP, Schacter DL, Goff DC, et al. Impaired hippocampal recruitment during normal modulation of memory performance in schizophrenia. Biol Psychiatry 2003; 53: 48–55.
  84. Ragland JD, Gur RC, Valdez J, et al. Eventrelated fMRI of frontotemporal activity during word encoding and recognition in schizophrenia. Am J Psychiatry 2004; 161: 1004–1015.
  85. Brébion G, Amador X, Smith MJ, et al. Mechanisms underlying memory impairment in schizophrenia. Psychol Med 1997; 27: 383–393.
  86. Nohara S, Suzuki M, Kurachi M, et al. Neural correlates of memory organization deficits in schizophrenia. A single photon emission computed tomography study with 99mTc-ethylcysteinate dimer during a verbal learning task. Schizophr Res 2000; 42: 209–222.
  87. Dugré JR, Dumais A, Tikasz A, et al. Functional connectivity abnormalities of the long-axis hippocampal subregions in schizophrenia during episodic memory. NPJ Schizophr 2021; 7: 19.
  88. Wang B, Pan T, Guo M, et al. Abnormal dynamic reconfiguration of the large-scale functional network in schizophrenia during the episodic memory task. Cereb Cortex (New York, NY : 1991) 2023; 33: 4135–4144.
  89. Nobre AC, Sebestyen GN, Gitelman DR, et al. Functional localization of the system for visuospatial attention using positron emission tomography. Brain 1997; 120: 515–533.
  90. Fan J, Gan J, Liu W, et al. Resting-state default mode network related functional connectivity is associated with sustained attention deficits in schizophrenia and obsessive-compulsive disorder. Front Behav Neurosci 2018; 12: 319.
  91. Arkin SC, Ruiz-Betancourt D, Jamerson EC, et al. Deficits and compensation: attentional control cortical networks in schizophrenia. NeuroImage Clin 2020; 27: 102348.

Photo
Nidhi Pathak
Corresponding author

Department of Humanities and Social Sciences, Sri Ramswaroop Memorial University, Lucknow, India

Photo
Dr. Pavitra Bajpai
Co-author

Department of Humanities and Social Sciences, Sri Ramswaroop Memorial University, Lucknow, India

Nidhi Pathak*, Dr. Pavitra Bajpai, Bridging Global Evidence and Local Realities: A Review of Cognitive Impairment in Schizophrenia, Int. J. Sci. R. Tech., 2026, 3 (1), 48-55. https://doi.org/10.5281/zenodo.18140279

More related articles
A Unified Video Content Understanding Framework fo...
M. Manjunath, M. Shashank, Sai Gagan Tej K. B. , C. Sharath Vamsh...
Screening and Early Diagnosis of Ovarian Cancer: A...
Ashlesha Chavhan, Kiran Kambale, Vishal Bhoye, Sani Gaikwad, Prac...
Immunopharmacology of Trained Immunity in Infectio...
Pratiksha Vyavahare, Kranti Akhare, Dr. N. P. Sawadadkar, Dr. N. ...
Formulation and Evaluation of Poly Herbal Face Pack...
Harshal Mahajan, Satyashila Mhaske, Dr. G. R. Sitaphale, Dr. P. R. Laddha, Dr. P. R. Tathe, ...
Some Ridge Biasing Parameter for Linear Regression Model and Their Performances ...
Raheed Saheed Lekan, Owolabi Muhammed Ishola, James Olasunkanmi Oladapo, Olabode John Oluwasina, Faw...
Related Articles
Neuropharmacology in the Era of Digital Psychiatry: Targeting Glutamatergic Imba...
Rahul Bobade, Vaishanvi Saste, Arti Mapari, Chakradhar Kadam, Mohan Tale, Dr. Nilesh Sawadadkar, Dr....
A Review on RNA-Based Therapeutics: Mechanisms, Applications, and Future Prospec...
Kranti Akhare, Pratiksha Vyavahare, S. K. Mohrut, Dr. N. R. Kayande, ...
Design of Experiments in the Formulation and Optimization of Sustained Release M...
Kartik Shinde, Dr. Nilesh Gorde, Swapnil Phalak, Prajval Birajdar, Vishal Bodke, ...
A Unified Video Content Understanding Framework for Youtube and Local Videos wit...
M. Manjunath, M. Shashank, Sai Gagan Tej K. B. , C. Sharath Vamshi, Srisailanath, ...
More related articles
A Unified Video Content Understanding Framework for Youtube and Local Videos wit...
M. Manjunath, M. Shashank, Sai Gagan Tej K. B. , C. Sharath Vamshi, Srisailanath, ...
Screening and Early Diagnosis of Ovarian Cancer: An Updated Review...
Ashlesha Chavhan, Kiran Kambale, Vishal Bhoye, Sani Gaikwad, Prachi Gaikwad, Pooja Rasal, ...
Immunopharmacology of Trained Immunity in Infectious and Non-Infectious Diseases...
Pratiksha Vyavahare, Kranti Akhare, Dr. N. P. Sawadadkar, Dr. N. R. Kayande, ...
A Unified Video Content Understanding Framework for Youtube and Local Videos wit...
M. Manjunath, M. Shashank, Sai Gagan Tej K. B. , C. Sharath Vamshi, Srisailanath, ...
Screening and Early Diagnosis of Ovarian Cancer: An Updated Review...
Ashlesha Chavhan, Kiran Kambale, Vishal Bhoye, Sani Gaikwad, Prachi Gaikwad, Pooja Rasal, ...
Immunopharmacology of Trained Immunity in Infectious and Non-Infectious Diseases...
Pratiksha Vyavahare, Kranti Akhare, Dr. N. P. Sawadadkar, Dr. N. R. Kayande, ...