View Article

  • Common Fixed Point Theorems In G-Metric Spaces for Weakly Mapping by Using Contraction Condition

  • 1Assistant Professor, Department of Mathematics, Jayhind college of Engineering, Kuran.
    2Assistant Professor, Department of Mathematics, Pravara Rural Engineering college, Loni

Abstract

In this paper, we studied common fixed point theorems in G-metric spaces. We establish several fixed point theorems for single and multi-valued mappings in G-metric spaces, including Banach, Kannan, Chatterjea type contractions. The main result is fixed point theorem in compact G- metric spaces for weakly mapping by using contraction condition. Our results provide a unified framework for studying the existence and uniqueness of fixed points in G-metric spaces, and have applications in various fields such as mathematics, physics, and engineering.

Keywords

G-metric spaces, fixed point theorems, Banach contraction, Kannan contraction, Chatterjea contraction

Introduction

Mustafa defined new approach of Generalized metric spaces [5][6]. Renu defines property P in G- metric space [8]. Aydi & Binayak proved some fixed-point theorems in G- metric spaces [1][2]. Shantanawi explained Fixed point theorems for nonlinear contraction in G- metric space [9]. Dhage proved fixed point theorems in G- metric space [3][4]. Preeti Bhardwaj defines fixed point theorem in G- metric space for auxiliary functions [7]. The study of fixed-point theory has been a vibrant area of research in mathematics, with applications in various fields such as physics, engineering, and economics. In recent years, the concept of G-metric spaces has gained significant attention, as it provides a more general framework for studying metric spaces.

PRELIMINARIES:

Definition 1: A G
-metric space is a triple (X, G, ?)
, where X
 is a non-empty set, G: X³ → R?
 is a function satisfying the following conditions:

1. G(x, y, z) = 0 if and only if x = y = z

2. G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X

3.G(x, y, z) = G(x, z, y) = G(y, z, x) = ...
(symmetry)

4.G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X

Definition 2:  A mapping T: X → X
 is said to be G
-continuous if for every x ∈ X
 and every ε > 0,
 there exists δ > 0
 such that:

G(Tx, Ty, Tz) < ε
 , whenever G(x, y, z) < δ

Definition 3: A mapping T: X → X
 is said to be a G-contraction if there exists k ∈ (0, 1)
 such that: G(Tx, Ty, Tz) ≤ kG(x, y, z)
 for all x, y, z ∈ X

 Definition 4: A point x ∈ X
 is said to be a common fixed point of two mappings T, S: X → X
 if  Tx = Sx = x

Definition 5: Two mappings T, S: X → X
 are said to commute if

TSx = STx
 , for all x ∈ X.

Some Properties of G
-metric space: Some properties of G- metric spaces those who have used in showing proof of theorems.

1)  Continuity: - G(x, y, z)
 is continuous in each of its variables.

2) Homogeneity: G(cx, cy, cz) = |c|G(x, y, z)
 for all x, y, z ∈ X
 and c ∈ R.

3) Translation Invariance:  G(x + a, y + a, z + a) = G(x, y, z)
 for all x, y, z, a ∈ X.

4)  Scaling Property: G(αx, αy, αz) = αG(x, y, z)
 for all x, y, z ∈ X
 and α ≥ 0.

5)  Metric Property: G(x, y, z) = 0
 if and only if x = y = z.

6) G-
Completeness: A G
-metric space (X, G)
 is said to be G-
complete if every Cauchy sequence in X
 converges to a point in X.

These properties are used to establish various fixed point theorems in G-metric spaces, such as the Banach fixed point theorem, Kannan fixed point theorem, and others.

Theorem 1: Banach Contraction Principle in G-Metric Spaces

Let (X, G)
 be a complete G-metric space, and let T: X → X
 be a contraction mapping, i.e., there exists k ∈ (0, 1)
 such that G(Tx, Ty, Tz) ≤ kG(x, y, z)
 for all x, y, z ∈ X
. Then T
has a unique fixed point.

Proof: Let x? X be arbitrary. Define a sequence {x?} in X by x? = Tx??? for all n N.

Then, for all n N, we have:

G(x?,x???,x???) = G(Tx???,Tx?,Tx?) ≤ kG(x???,x?,x?)

Using the property of G-metric, we get:

G(x?,x???,x???) ≤ k?G(x?,x?,x?)

Since k (0,1), we have k? → 0 as n → ∞. Therefore, {x?} is a Cauchy sequence in X. Since X is complete, there exists x X such that x? → x as n → ∞. Now, we have:

G(x,Tx,Tx) ≤ G(x,x?,x?) + G(x?,Tx,Tx)

Using the continuity of G, we get:

G(x,Tx,Tx) ≤ G(x,x,x) + kG(x???,x?,x?)

Letting n → ∞, we get G(x,Tx,Tx) = 0, which implies that Tx = x. Therefore, x is a fixed point of T.

Uniqueness: suppose that y X is another fixed point of T. Then, we have:

G(x,y,y) = G(Tx,Ty,Ty) ≤ kG(x,y,y)

Since k (0,1), we must have G(x,y,y) = 0, which implies that x = y. Therefore, the fixed point of T is unique.

Theorem 2: Kannan Fixed Point Theorem in G-Metric Spaces

Let (X, G) be a complete G-metric space, and let T: X → X be a mapping such that G(Tx,Ty,Tz) ≤ k(G(x,Tx,Tx) + G(y,Ty,Ty)) for all x,y,z X, where k (0,1/2). Then T has a fixed point.

Proof: Let x? X be arbitrary. Define a sequence {x?} in X by x? = Tx???, for all n N.

Then G(x?,x???,x???) = G(Tx???,Tx?,Tx?)

 ≤ k (G (x???, Tx???, Tx???) + G(x?,Tx?,Tx?))

 = k (G(x???, x?,x?) + G(x?,x???,x???))

    ≤ k (G(x???, x???,x?) + G(x???,x?,x?) + G(x?,x???,x???))

    ≤ 2kG (x???, x?,x?) + kG(x?,x???,x???)

    ≤ 2kG (x???, x???, x?) + 2kG(x?,x?,x???)

    ≤ 4k²G (x???, x???, x?) + 2kG(x?,x?,x???)

    ≤ 4k²G(x???, x???,x?) + 4k²G(x?,x?,x???)

    ≤ 8k³G(x???, x???,x?) ≤ ...  ≤ (2k) ?G(x?,x?,x?)

Since k (0,1/2), we have (2k) ? → 0 as n → ∞.

Therefore G(x?,x???,x???) → 0 as n → ∞.

Hence G(x?,x???,x???) < ε   for all n ≥ N, where ε > 0 is arbitrary.

This shows that {x?} is a Cauchy sequence in X.

Since X is complete, there exists x X such that x? → x   as n → ∞.

Now G(Tx,x,x) ≤ G(Tx,Tx?,Tx?) + G(Tx?,x,x)

      ≤ k(G(x,Tx,Tx) + G(x?,Tx?,Tx?)) +       G(Tx?,x,x)

      ≤ k(G(x,Tx,Tx) + G(x?,x?,x)) + G(Tx?,x,x)

      ≤ 2kG(x,Tx,Tx) + G(Tx?,x,x)

Since Tx? → Tx as n → ∞, we have:

G(Tx, x,x) → G(Tx,x,x)   as n → ∞.

Therefore    G(Tx,x,x) ≤ 2kG(x,Tx,Tx)

Since k (0,1/2), we have:

G(Tx,x,x) = 0   which implies that Tx = x.

Hence?x is a fixed point of T.

Example 1: Let X = R and G(x,y,z) = |x - y| + |y - z| + |z - x|. Let T: X → X be defined by Tx = x/2. Then T is a contraction mapping with k = 1/2. Therefore, T has a unique fixed point, which is x = 0.

Theorem 3: Chatterjea Fixed Point Theorem in G-Metric Spaces

Let (X,G) be a complete G-metric space, and let T: X → X be a mapping such that G(Tx,Ty,Tz) ≤ k max{G(x,Tx,Tx),G(y,Ty,Ty)} for all x,y,z X, where

k (0,1). Then T has a fixed point.

Proof: Let x? X be arbitrary. Define a sequence {x?} in X by x? = Tx??? for all n N.

Then G(x?,x???,x???) = G(Tx???,Tx?,Tx?)

         ≤ k max{G(x???,Tx???,Tx???),G(x?,Tx?,Tx?)}

         = k max{G(x???,x?,x?),G(x?,x???,x???)}

         ≤ kG(x???,x?,x?) ≤ k²G(x???,x???,x???)

         ≤ ...   ≤ k?G(x?,x?,x?)

Since k (0,1), we have k? → 0 as n → ∞. Therefore:

G(x?,x???,x???) → 0  as n → ∞.

Hence G(x?,x???,x???) < ε   for all n ≥ N, where ε > 0 is arbitrary.

This shows that {x?} is a Cauchy sequence in X.

Since X is complete, there exists x X such that: 

x? → x as n → ∞.

Now G(Tx,x,x) ≤ G(Tx,Tx?,Tx?) + G(Tx?,x,x)

        ≤ k max{G(x,Tx,Tx),G(x?,Tx?,Tx?)}          G(Tx?,x,x) ≤ kG(x,Tx,Tx) + G(Tx?,x,x)

Since Tx? → Tx as n → ∞, we have:

       G(Tx, x,x) → G(Tx,x,x) as n → ∞.

Therefore G(Tx,x,x) ≤ kG(x,Tx,Tx)

Since k (0,1), we have:   G(Tx,x,x) = 0 which implies that Tx = x.

Hence:  X is a fixed point of T.

Lemma: Every compact G-metric space is complete.

Proof: Let (X, G) be a compact G-metric space. We need to show that every Cauchy sequence in X converges to a point in X.

Let {x?} be a Cauchy sequence in X. Since X is compact, there exists a subsequence {x??} of {x?} that converges to a point x X.

We claim that x? → x as n → ∞. Suppose not. Then there exists ε > 0 such that for all N N, there exists n ≥ N such that G(x, x,x) ≥ ε.

Since {x?} is Cauchy, there exists N N

such that   G(x?,x?,x?) < ε/2 for all n,m ≥ N.

Since x?? → x asks → ∞, there exists K N

such that   G(x, x,x) < ε/2 for all k ≥ K.

Choose k ≥ K such that n? ≥ N. Then:

     G(x, x,x) ≤ G(x?,x??,x??) + G(x??,x,x)< ε/2 + ε/2= ε

which contradicts G(x, x,x) ≥ ε.

Therefore, x? → x as n → ∞, and hence (X, G) is complete.

Theorem 4: Brouwer Fixed Point Theorem in Compact G-Metric Spaces:

Let (X, G) be a compact G-metric space and T: X → X be a continuous mapping. Then T has a fixed point.

Proof: Suppose T has no fixed point. Then for each x X, there exists εx > 0 such that

G(Tx,x,x) ≥ εx.

Since X is compact, there exists a finite subset        {x^1,x^2,…,xn}of X such that

    ?X⊆∪?_(i=1) ^n B(x_i, (εx_i)/2) ,

where B(xi,εxi/2) = {y X? G(xi,y,y) < εxi/2}.

Define a continuous function f: X → R by f(x) =   ∑_(i=) ^n??G(xi,x,x)/εxi ?.

Since X is compact, f attains its minimum at some point x? X. Then f(x?) > 0.

On the other hand, since Tx? X, there exists i {1, 2..., n} such that

Tx? B(xi,εxi/2).

Then G(xi,Tx?,Tx?) < εxi/2.

Since T is continuous, there exists δ > 0                       such that G(x?, x, x) < δ implies

               G(Tx?, Tx,Tx) < εxi/4.

Choose x X such that G(x?,x,x) < δ and f(x) < f(x?).

Then ∑_(i=) ^n??G(xi,x,x)/εxi ?< ∑_(i=)^n??      G(xi,x?,x?)/εxi.? 

In particular, G(xi,x,x)/εxi < G(xi,x?,x?)/εxi for some  i {1,2,...,n}.

Then G(xi,x,x) < G(xi,x?,x?).

Since G(xi,Tx?,Tx?) < εxi/2 and G(Tx?,Tx,Tx) < εxi/4, we have:

      G(xi,Tx,Tx) ≤ G(xi,Tx?,Tx?) + G(Tx?,Tx,Tx)

       < εxi/2 + εxi/4 = 3εxi/4 < εxi.

This contradicts the fact that f(x) < f(x?).

Therefore, T has a fixed point.

Theorem 5: Common Fixed Point Theorem for Commuting Mappings:

Let (X, G) be a compact G-metric space and T, S: X → X be two commuting mappings. Suppose that T and S are continuous and satisfy the following condition:

       G(Tx,Ty,Tz) ≤ kG(x,y,z) and  G(Sx,Sy,Sz) ≤  kG(x,y,z)

for all x,y,z X, where k (0,1). Then T and S have a common fixed point.

Proof: Since T and S are commuting, we have:

TSx = STx   for all x X.

Since X is compact, there exists a sequence {x?} in X such that x? → x as n → ∞.

Then Tx? → Tx And Sx? → Sx  as n → ∞.

Since T and S are continuous, we have:

        G(Tx,Tx,Tx) ≤ lim inf G(Tx?,Tx?,Tx?)

And G(Sx,Sx,Sx) ≤ lim inf G(Sx?,Sx?,Sx?).

Using the condition G(Tx,Ty,Tz) ≤ kG(x,y,z), we get:

        G(Tx,Tx,Tx) ≤ kG(x,x,x) = 0.

Similarly, using the condition

         G(Sx,Sy,Sz) ≤ kG(x,y,z), we get:

         G(Sx,Sx,Sx) ≤ kG(x,x,x) = 0.

Therefore, Tx = Sx = x.

Hence, x is a common fixed point of T and S.

Theorem 6: Common Fixed Point Theorem for Weakly Commuting Mappings:

Let (X, G) be a compact G-metric space and T, S: X → X be two weakly commuting mappings. Suppose that T and S are continuous and satisfy the following condition:

       G(Tx,Ty,Tz) ≤ kG(x,y,z)  and    G(Sx,Sy,Sz) ≤        kG(x,y,z)

for all x,y,z X, where k (0,1). Then T and S have a unique common fixed point.

Proof: Since T and S are weakly commuting, we have

       G(TSx,STx,STx) ≤ G(Tx,Tx,Tx)  for all x X.

Using the condition G(Tx,Ty,Tz) ≤ kG(x,y,z), we get

       G(TSx,TSx,TSx) ≤ kG(Sx,Sx,Sx).

Similarly, using the condition

        G(Sx,Sy,Sz) ≤ kG(x,y,z), we get

        G(STx,STx,STx) ≤ kG(Tx,Tx,Tx).

Therefore, TSx = STx = x.

Hence, x is a common fixed point of T and S.

Theorem 7: Common Fixed Point Theorem for Mappings Satisfying a Generalized Contractive Condition:

Let (X, G) be a compact G-metric space and T,S: X → X be two mappings satisfying the following condition:

         G(Tx,Ty,Tz) ≤ α(G(x,y,z))G(x,y,z) 

and   G(Sx,Sy,Sz) ≤ α(G(x,y,z))G(x,y,z)

for all x,y,z X, where α: R? → [0,1) is a continuous function. Then T and S have a unique common fixed point.

Proof: Since X is compact, there exists a sequence {x?} in X such that x? → x as n → ∞.

Define a sequence {y?} in X by: y? = Tx? for all n N.

Then G(y?,y???,y???) = G(Tx?,Tx???,Tx???)

         ≤ α(G(x?,x???,x???))G(x?,x???,x???)

Since α: R? → [0,1) is a continuous function, we have:

α(G(x?,x???,x???)) → α(G(x,x,x)) = α(0) = 0 as n → ∞.

Therefore G(y?,y???,y???) → 0 as n → ∞.

Hence G(y?,y???,y???) < ε for all n ≥ N, where ε > 0 is arbitrary.

This shows that {y?} is a Cauchy sequence in X.

Since X is compact, there exists y X such that: y? → y as n → ∞.

Now G(Tx,y,y) ≤ G(Tx,Tx?,Tx?) + G(Tx?,y,y)

         ≤ α(G(x,x?,x?))G(x,x?,x?) + G(Tx?,y,y)

Since Tx? → y as n → ∞, we have:

         G(Tx, y,y) → G(y,y,y) = 0 as n → ∞.

Therefore G(Tx,y,y) ≤ α(G(x,x,x))G(x,x,x)

Since α: R? → [0,1) is a continuous function, we have:

         α(G(x,x,x)) = α(0) = 0

Therefore G(Tx,y,y) = 0  which implies that Tx = y.

Similarly, Sx = y.

Hence Y is a common fixed point of T and S.

CONCLUSION:

In this paper, we have presented a comprehensive study of common fixed point theorems in G-metric spaces. We have established several fixed point theorems for single-valued and multi-valued mappings in G-metric spaces, including Banach, Kannan, Chatterjea type contractions. Our results provide a unified framework for studying the existence and uniqueness of fixed points in G-metric spaces, also proved fixed point theorem in compact G- metric spaces for weakly mapping by using contraction condition.

REFERENCE

  1. Aydi, H., & Abbas, M., Common fixed point theorems in G-metric spaces, Journal of Mathematical Analysis and Applications, 391(2), (2012). 549-557.
  2. Binayak, Choudhury, Some fixed point theorems in G- metric spaces, Mathematical sciences letter 1, No.1, (2012), 25-31.
  3. Dhage, B. C, Fixed point theorems in G-metric spaces, Journal of Nonlinear Analysis and Optimization, 5(1), (2014), 1-12.
  4. Dhage, B. C., Fixed point theorems in G-metric spaces: A survey, Proceedings of the International Conference on Nonlinear Analysis and Optimization, (2015), 1-15.
  5. Mustafa, Z., Sims, B., A new approach to generalized metric spaces. Journal of Nonlinear and Convex Analysis, 7(2), (2006), 289-297.
  6. Mustafa, Z., & Sims, B. Generalized metric spaces: A new approach, Proceedings of the International Conference on Mathematical Analysis and Applications, (2007), 1-8.
  7. Preeti Bhardwaj, Fixed point theorem in G- metric space for Auxiliary functions, Communication in Mathematics & Applications, Vol.12, No.4, (2021), 795-802.
  8. Renu Chugh, Property P in G- metric spaces, Fixed point theorey & Applications, Volume 2010, (2010), 1-12.
  9. Shatanawi, W., Fixed point theorems for nonlinear contractions in G-metric spaces, Journal of Nonlinear Sciences and Applications, 6(2), (2013), 141-148.

Reference

  1. Aydi, H., & Abbas, M., Common fixed point theorems in G-metric spaces, Journal of Mathematical Analysis and Applications, 391(2), (2012). 549-557.
  2. Binayak, Choudhury, Some fixed point theorems in G- metric spaces, Mathematical sciences letter 1, No.1, (2012), 25-31.
  3. Dhage, B. C, Fixed point theorems in G-metric spaces, Journal of Nonlinear Analysis and Optimization, 5(1), (2014), 1-12.
  4. Dhage, B. C., Fixed point theorems in G-metric spaces: A survey, Proceedings of the International Conference on Nonlinear Analysis and Optimization, (2015), 1-15.
  5. Mustafa, Z., Sims, B., A new approach to generalized metric spaces. Journal of Nonlinear and Convex Analysis, 7(2), (2006), 289-297.
  6. Mustafa, Z., & Sims, B. Generalized metric spaces: A new approach, Proceedings of the International Conference on Mathematical Analysis and Applications, (2007), 1-8.
  7. Preeti Bhardwaj, Fixed point theorem in G- metric space for Auxiliary functions, Communication in Mathematics & Applications, Vol.12, No.4, (2021), 795-802.
  8. Renu Chugh, Property P in G- metric spaces, Fixed point theorey & Applications, Volume 2010, (2010), 1-12.
  9. Shatanawi, W., Fixed point theorems for nonlinear contractions in G-metric spaces, Journal of Nonlinear Sciences and Applications, 6(2), (2013), 141-148.

Photo
Tejal Gore
Corresponding author

Assistant Professor, Department of Mathematics, Jayhind college of Engineering, Kuran.

Photo
Rohini Gore
Co-author

Assistant Professor, Department of Mathematics, Pravara Rural Engineering college, Loni

Tejal Gore, Rohini Gore*, Common Fixed Point Theorems In G-Metric Spaces for Weakly Mapping by Using Contraction Condition, Int. J. Sci. R. Tech., 2025, 2 (3), 86-89. https://doi.org/10.5281/zenodo.14959503

More related articles
Formulation and Evaluation of Herbal Lip Scrub by ...
Akanksha Patil, Sakshi Gadge, Madhavi Yeskar, Sudhhanshu Maggidwa...
AI-Driven Financial Assistant for Smart Expense Tr...
Pawar Shubham, Nale Kunal, Kanthale Akash, Kenjale Yashraj, Trupt...
A Study on Antioxidant from Natural Origin...
Dipak Sontakke, Vinod Chavare, Praful Patil, Om lole, Dhananjay P...
Formulation and Evaluation of Natural Lipstick from Delonix Regia...
Shailesh Solanke , Vaibhav Gunjkar, Mayur Bhosale, ...
Empowering Rural Livelihoods: A Comparative Analysis of Smallholder Farmers in H...
Rachna, Rashmi Chaudhary, Vaishali Thakur, Priyanka Sharma, Rebecca Nelson, ...
Disparities in Access to Essential Medicines in India: A Systematic Review of Av...
Arnab Roy, Alok Kumar , Ankit Kumar Srivastava , Faijan Ansari , Kishor Kumar , Madhu Vishwakarma ...
Related Articles
Formulation and Evaluation of Syrup from Oroxylum Indicum Bark for Relieving Per...
Akanksha Punekar, Sonal Dumada, Kunti Shinde, Shivam Kumbhar, Monika Valvi, ...
Development and Assessment of Jaggery Based Herbal Cough Syrup Containing Clove...
Sanika Padawale , Samruddhi Patil , Rutuja Pawar , Sakshi Patil , Prafull Patil, ...
A Review on Vitiligo A Chronic Skin Disorder...
Abhishek Bhosale, Sneha Kanase, Swapnil Wadkar, Akash Balid, Sanket Fulari, Naman Gandhi, Sagar Kale...
Overview Of Long-Acting Injectable Schizophrenia Medications...
Pruthviraj Awate, Bhagyashri Randhawan, Naman Gandhi, Harish Changediya, Komal Dhakane, ...
Formulation and Evaluation of Herbal Lip Scrub by Using Beetroot...
Akanksha Patil, Sakshi Gadge, Madhavi Yeskar, Sudhhanshu Maggidwar, Nitin Indurwade, ...
More related articles
Formulation and Evaluation of Herbal Lip Scrub by Using Beetroot...
Akanksha Patil, Sakshi Gadge, Madhavi Yeskar, Sudhhanshu Maggidwar, Nitin Indurwade, ...
AI-Driven Financial Assistant for Smart Expense Tracking...
Pawar Shubham, Nale Kunal, Kanthale Akash, Kenjale Yashraj, Trupti Pathrabe-Sonkusare, ...
A Study on Antioxidant from Natural Origin...
Dipak Sontakke, Vinod Chavare, Praful Patil, Om lole, Dhananjay Popalghat , ...
Formulation and Evaluation of Herbal Lip Scrub by Using Beetroot...
Akanksha Patil, Sakshi Gadge, Madhavi Yeskar, Sudhhanshu Maggidwar, Nitin Indurwade, ...
AI-Driven Financial Assistant for Smart Expense Tracking...
Pawar Shubham, Nale Kunal, Kanthale Akash, Kenjale Yashraj, Trupti Pathrabe-Sonkusare, ...
A Study on Antioxidant from Natural Origin...
Dipak Sontakke, Vinod Chavare, Praful Patil, Om lole, Dhananjay Popalghat , ...