View Article

Abstract

"An ultra-thin film containing an active ingredient that dissolves or disintegrates in the saliva at aremarkably fast rate, within few seconds without the aid of water or chewing," is the definition ofa fast-dissolving oral film (FDOF). The most up-to-date oral solid dosage form is fast-dissolving oral films (FDOFs), which provide more comfort and flexibility. It improves the absorption of active pharmaceutical ingredients (APIs) by dissolving them in saliva and allowing them to be swallowed without chewing or water. The oral mucosa is four to a thousand times more permeable than the epidermis, allowing for rapid drug absorption and rapid bioavailability. Formulated drug- opening foams (FDOFs) are made from hydrophilic polymers that dissolve rapidly in the mouth and release the medication into the bloodstream via the buccal mucosa. [1] A fast-dissolving drug delivery method is developed to enhance bioavailability of drugs with modest dosages and significant first-pass metabolism.

Keywords

Fast Dissolving Film, Lisinopril, FDOF, APIs

Introduction

1.2 Oral Dissolving Film Theory:

In this setup, a thin film is present. Sublingual administration improves bioavailability because the drug dissolves faster and bypasses first-pass metabolism. Because SA is more easily absorbed, it breaks down and dissolves rapidly in the mouth. The following are the three main types of oral films:

1. Films have a rapid dissolving or releasing time (when held to the mouth).

2. Mucoadhesive films that dissolve (for use in the buccal or gingival area). The third option is buccal mucosa-adhering sustained-release films. [3]

1.3 Mechanism of oral mouth dissolving film theory:

Figure 1: Mechanism of oral mouth dissolving film theory

Figure 2: Mouth-dissolving film

1.4 Need for fast-dissolving drug delivery systems: [4]

Patients with dysphasia may find it easier to take their medication as prescribed when it dissolves quickly. If a medicine is subject to patent protection, the marketing department will find that FDDS is a useful tool for managing the medical life cycle.

METHODS

1 Solvent casting method [81]

Fast dissolving films were prepared by solvent casting method as per the composition shown in table 1.In this method, the required quantity of water soluble polymer Sodium carboxymethyl cellulose was dissolved in distilled water in a beaker (covered with aluminium foil) with continuous stirring on magnetic stirrer to make required percentage of polymer solution and then the weighed quantity of ingredients like lisinopril as drug , glycerol as plasticizer, and menthol a flavor, Saccharin sodium as Sweetening agent was dissolved in distilled water in another beaker and then this mixture was added to the polymer solution. After continuous stirring for 2 hours the solution was left undisturbed for 12 – 16 hours to remove all the air bubbles. This polymeric – drug solution was then poured on to the moulds, allowed to air dry , packed in aluminum foil and then stored in desiccators until use.

Advantages

• Film has a fine gloss and is devoid of flaws like die lines, and it has superior uniformity of thickness and clarity to extrusion.

•  The recommended finished film thickness is typically 12-100 m; however different

thicknesses are available to fulfill API loading and dissolving needs. The film has better physical qualitiesand is more flexible.

Disadvantages:

1.   The polymer needs to be soluble in water or a volatile solvent.

2.    It is ideal to generate a stable solution with a reasonable minimum solid content and viscosity.

3.    It must be feasible to create a homogeneous film and be released from the casting support.

6.2.2 Experimental Design [82]

Box–Behnken design was employed to studythe effect of each independent variable on dependent variables Disintegration time (sec), Drug content (%) and Drug release (%) Lisinopril film formulation were prepared by solvent casting method.The Lisinopril film were optimized by using Box-Behnken Experimental Design (3 Factor, 2 Level, and DesignExpert Version 13). The independent variables selected were Sodium carboxymethyl cellulose(mg) (X1), Sodium starch glycolate(mg) (X2) and Glycerol(ml) (X3) with their low and high levels for preparing 13 run of formulations and dependent variable selected were Disintegration time(sec) ,( wetting time (sec)and Drug release (%). Finally optimized was selected for further characterization.

Table 14: DOE suggested and experimental batches

Formulation code

Lisinopril (mg)

Sodium carboxymethyl

cellulose (mg)

Sodium starch

glycolate(mg)

Glycerol (ml)

Saccharin sodium

(mg)

Menthol (ml)

Distilled water(ml)

L1

158.96

450

10

0.5

10

Q. S

Q. S

L2

158.96

450

11

0.75

10

Q. S

Q. S

L3

158.96

650

10

0.75

10

Q. S

Q. S

L4

158.96

650

12

0.75

10

Q. S

Q. S

L5

158.96

250

11

1

10

Q. S

Q. S

L6

158.96

250

11

0.5

10

Q. S

Q. S

L7

158.96

250

10

0.75

10

Q. S

Q. S

L8

158.96

450

10

1

10

Q. S

Q. S

L9

158.96

650

11

1

10

Q. S

Q. S

L10

158.96

450

12

1

10

Q. S

Q. S

L11

158.96

250

12

0.75

10

Q. S

Q. S

L12

158.96

450

12

0.5

10

Q. S

Q. S

L13

158.96

650

11

0.5

10

Q. S

Q. S

Calculation for Petri Dish

Diameter of Petri dish = 9cm Area of circle =

= 3.14 × 4.5 × 4.5

=63.585 cm2

Area of Single patch = L × W Area of Single patch =2×2

= 4 cm2

So, Total no of films = 63.585 / 4

=15.89

Total amount of drug requires = i.e. (Total no of films × Dose of drug) = 15.896×10 Total amount of drug require =158.96 mg

Table 15: List of independent variable and dependent variable on box Behnken design

Independent Variable

Low (-1)

High (+)

Sodium carboxymethyl cellulose(mg)

250

450

starch glycolate(mg)

10

12

Glycerol(ml)

0.5

1

Dependent Variable

Constraint

 

Disintegration time(sec)

Maximize

 

Drug content (%)

Maximize

 

Drug release (%)

Maximize

 

RESULT AND DISCUSSION  

7.1 PREFORMULATION STUDY

7.1.1 Identification of drug

1.1.1.1 Appearance

7.1.1.2 Active pharmaceutical ingredient: Lisinopril

7.1.2 Melting point

The capillary tube method was used to determine the melting point. The melting point of Lisinopril was found to be 164 and recorded melting point of Lisinopril 162-165 °C.

Table 16: Observation of melting point

Drug name

Observed value

Reported value

Lisinopril

164

162-165

Figure 10: Melting point of Lisinopril

7.1.3 Solubility study of lisinopril

The solubility study of lisinopril across various mediums reveals that methanol provides the highest solubility at 48.16 mg/mL, making it the most effective solvent for dissolving lisinopril. Ethanol (30.14 mg/mL) and distilled water (29.14 mg/mL) also demonstrate good solubility, suggesting they are suitable alternatives for formulation purposes. 

Table 17: Solubility in different Medium

Medium

Solubility(mg/ml)

Distilled water

29.14

Methanol

48.16

Ethanol

30.14

Phosphate buffer ph 6.8

28.46

Phosphate buffer ph 7.4

26.54

Acidic buffer

21.46

Figure 11: Solubility in different Medium

7.1.2 Spectrophotometric characterization of Lisinopril in UV Spectroscopy

7.1.2.1 Detection of Absorption Maxima (λ max)

Table 18: Observation of λmax

Drug name

Observed value(nm)

Reported value(nm)

Cilnidipine

210

210-220

7.1.2.2 Calibration curve

Table 19: Calibration curve in Distilled water

Concentration (µg/ml)

Absorbance

0

0

2

0.015

4

0.021

6

0.035

8

0.052

10

0.062

12

0.071

Figure 12: Calibration curve in Distilled water

Equation

y = 0.006x + 0.0004

Correlation coefficient

0.9909

7.1.2.2.2 Calibration curve in Methanol

Table 20: Calibration curve in Methanol

Concentration (µg/ml)

Absorbance

0

0

2

0.125

4

0.235

6

0.354

8

0.487

10

0.587

12

0.747

Figure 13: Calibration curve in Methanol

Equation

y = 0.061x - 0.004

Correlation coefficient

0.9979

 7.1.2.2.3 Calibration curve in Ethanol

Table 21: Calibration curve in Ethanol

 Concentration (µg/ml)

Absorbance

0

0

2

0.125

4

0.185

6

0.350

8

0.427

10

0.589

12

0.647

Figure 14: Calibration curve in ethanol

Equation

y = 0.0556x - 0.0015

Correlation coefficient

0.9895

7.1.2.2.4 Calibration curve in Phosphate buffer pH 6.8

Table 22: Calibration curve in Phosphate buffer pH 6.8

Concentration (µg/ml)

Absorbance

0

0

2

0.012

4

0.125

6

0.251

8

0.416

10

0.520

12

0.640

Figure 15: Calibration curve in Phosphate buffer pH 6.8

Equation

y = 0.0576x - 0.0652

Correlation coefficient

0.9767

7.1.2.2.5 Calibration curve in Phosphate buffer pH 7.4

Table 23: Calibration curve in Phosphate buffer pH 7.4

Concentration (µg/ml)

Absorbance

0

0

2

0.125

4

0.198

6

0.224

8

0.314

10

0.456

12

0.489

Figure 16: Calibration curve in Phosphate buffer pH 7.4

Equation

y = 0.0401x + 0.0175

Correlation coefficient

0.9745

7.1.2.2.6 Calibration curve in Acidic buffer pH 1.2

Concentration (µg/ml)

Absorbance

0

0

2

0.122

4

0.132

6

0.169

8

0.241

10

0.3997

12

0.487

Figure 17: Calibration curve in Acidic buffer pH 1.2

7.2 Post Formulation Study

7.2.1 Transparency

Physical appearance of the formulations. The clear transparency indicates that there are no visible particles or impurities present in any of the formulations. Additionally, the optimization of batch L8 suggests that it meets the desired criteria for clarity and uniformity, making it the preferred choice for further development or use in applications requiring clear formulations.

Table 25: Transparency of L1to L13

Formulation code

Transparency

L1

Clear

L2

Clear

L3

Clear

L4

Clear

L5

Clear

L6

Clear

L7

Clear

L8

Clear

L9

Clear

L10

Clear

L11

Clear

L12

Clear

L13

Clear

7.2.2Weight Variation

The optimized batch (L8) of the fast dissolving film formulation exhibited a weight variation of 46.4 ± 0.24. This result indicates a consistent weight among different units of the film, ensuring uniformity in dosage. A low variation in weight is crucial for maintaining the quality and efficacy of the pharmaceutical product. Therefore, batch L8 meets the desired standards for weight uniformity in the formulation.

26: Weight Variation L1to L13

Formulation code

Weight Variation (mg)

L1

54.6±0.01

L2

62.56±0.02

L3

58.46±0.03

L4

89.1±0.01

L5

79.9±0..05

L6

87.3±0.12

L7

91.46±0.03

L8

46.4±0.24

L9

79±0.03

L10

47±0.15

L11

49±0.02

L12

36.56±0.06

L13

62.3±0.005

7.2.3 Moisture content

Moisture content data, formulation L8 emerges as the optimized choice due to its comparatively low moisture content of 2.7% ± 0.546.

27: Moisture content L1to L13

Formulation code

Moisture content (%)

L1

4 ± 0.879

L2

5 ± 0.546

L3

4.5 ± 0.442

L4

6± 0.534

L5

5.2 ± 0.945

L6

6.2± 0.764

L7

7 .1± 0.345

L8

2.7± 0.546

L9

5.4± 0.142

L10

4.6± 0.503

L11

3±0.511

L12

2.9±0.234

L13

3.5±0.141

7.2.4 Thickness (mm)

The optimized batch (L8) of the fast dissolving film formulation exhibited a thickness of 0.14 ± 0.010 mm.

28: Thickness (mm) L1to L13

Formulation code

Thickness(mm)

L1

0.11 ± 0.0.1

L2

0.13 ± 0.0.2

L3

0.10 ± 0.01

L4

0.16 ± 0.005

L5

0.15 ± 0.03

L6

0.14 ± 0.04

L7

0.9 ± 0.005

L8

0.14 ± 0.010

L9

0.16 ± 0.005

L10

0.11 ± 0.05

L11

0.9±0.01

L12

0.17±0.02

L13

0.15±0.04

7.2.5 Folding endurance study

The optimized batch (l8) of the fast dissolving film formulation demonstrated excellent folding endurance, with a value exceeding 300.

29: Folding endurance L1to L13

Formulation code

Folding endurance

L1

> 300

L2

> 300

L3

> 300

L4

150

L5

209

L6

> 300

L7

124

L8

> 300

L9

130

L10

> 300

L11

> 300

L12

> 300

L13

> 300

7.2.6 Surface pH

The optimized fast dissolving film formulation (l8) exhibited a pH of 6.1.

Table 30: PH of L1to L13

 Formulation code

ph

L1

6.3±0.002

L2

6.40. ±003

L3

6.13±0.06

L4

6.7±0.07

L5

6.5±0.07

L6

6.83±0.06

L7

7.13±0.05

L8

6.1±0.06

L9

6.94±0.03

L10

6.67±0.04

L11

6.70±0.06

L12

6.56±0.05

L13

6.59±0.012

7.2.7 Drug Content (%)

Formulation L8 exhibits the highest drug content among the tested formulations, with a percentage of 96.48%.

Table 31: Drug Content (%) of L1to L13

Formulation code

Drug Content (%)

L1

87.89

L2

90.16

L3

89.98

L4

93

L5

86.65

L6

73.56

L7

89.13

L8

96.48

L9

88.36

L10

94.56

L11

79

L12

78.46

L13

88.49

ANOVA for Linear model Response 2: Drug content

Source

Sum of Squares

df

Mean Square

F- value

p- value

 

Model

343.74

3

114.58

5.62

0.0189

significant

A-Sodium carboxymethyl

cellulose

123.95

1

123.95

6.08

0.0358

 

B-Sodium starch glycolate

42.60

1

42.60

2.09

0.1823

 

C-glycerol

177.19

1

177.19

8.69

0.0163

 

Residual

183.52

9

20.39

 

 

 

Cor Total

527.26

12

 

 

 

 

Factor coding is coded.

Sum of squares is Type III - Partial

Figure 18: Counter plot

Figure 19: Predicted vs Actual plot

Figure 20: 3D Surface plot

7.2.8 Tensile strength (N/mm²)

The tensile strength of formulation L8 is determined to be 3.4 ± 0.14 N/mm², positioning it as the optimized batch among the formulations tested. This suggests that formulation L8 possesses favorable mechanical characteristics, which are crucial for the integrity and performance of the product.

Table 32: Tensile strength (N/mm²) of L1to L13

Formulation code

Tensile strength((N/mm²))

L1

5.3 ± 0.01

L2

6.9 ± 0.02

L3

6.8 ± 0.04

L4

4.3 ± 0.02

L5

3.9 ± 0.03

L6

9.5 ± 0.02

L7

4.1 ± 0.23

L8

3.4 ± 0.14

L9

4.8 ± 0.05

L10

7.6 ± 0.04

L11

5.4 ± 0.03

L12

6.7 ± 0.13

L13

7.4 ± 0.5

7.2.9 Percentage elongation (%)

Percentage elongation for various formulations ranges from 13.6% to 45.26%.      

Table 33: Percentage elongation (%) of L1to L13

Formulation code

Percentage elongation (%)

L1

27.4 ± 0.12

L2

33.2 ± 0.07

L3

34.2 ± 0.01

L4

17.0 ± 0.14

L5

16.8 ± 0.34

L6

45.26 ± 0.010

L7

13.6± 0.05

L8

39.3 ± 0.12

L9

22.1 ± 0.30

L10

37.0 ± 0.15

L11

26.5 ± 0.10

L12

30.3 ± 0.07

L13

38.0 ± 0.14

7.2.10. in Vitro Disintegration Time

The disintegration time for various formulations of fast-dissolving oral films (batch L8) ranges from 22 to 62 seconds.

Table 34: Disintegration Time of L1to L13

Formulation code

Disintegration Time(sec)

L1

35

L2

38

L3

53

L4

62

L5

29

L6

28

L7

32

L8

22

L9

53

L10

27

L11

30

L12

43

L13

37

ANOVA for Linear model Response 1: disintegration time

Source

Sum of

Squares

df

Mean

Square

F-

value

p-

value

 

Model

992.50

3

330.83

4.11

0.0431

significant

A-Sodium

carboxymethyl cellulose

924.50

1

924.50

11.48

0.0080

 

B-Sodium starch glycolate

50.00

1

50.00

0.6211

0.4509

 

C-glycerol

18.00

1

18.00

0.2236

0.6476

 

Residual

724.58

9

80.51

 

 

 

Cor Total

1717.08

2

 

 

 

 

Factor coding is coded.

Sum of squares is Type III - Partial

Figure 21: Counter plot

Figure 22: Predicted vs Actual plot

Figure 23: 3D Surface plot

 7.2.11 In Vitro drug release study

The in-vitro diffusion study for the L8 optimized batch shows exceptional performance, with an initial drug release of 20.56% ± 0.04 at 1 minute and reaching a near-complete release of 98.99% ± 0.687 at 10 minutes.

Table 35: Drug release of L1-L6

Time (min)

L1

L2

L3

L4

L5

L6

0

0

0

0

0

0

0

1

23.56±0.01

19.46±0.03

15.46±0.03

20.46±0.03

17.89±0.005

17.89±0.05

2

35.56±0.02

32.56±0.06

30.12±0.01

30.44±0.05

29.45±0.156

28.79±0.01

3

45.63±0.123

44.78±0.05

41.35±0.156

43.56±0.06

38.89±0.05

35.44±0.02

4

52.64±0.05

50.16±0.04

50.66±0.04

53.49±0.08

49.89±0.063

49.76±0.05

5

62.49±0.03

64.64±0.346

58.79±0.04

61.44±0.07

57.89±0.741

53.66±0.06

6

69.25±0.01

69.77±0.254

63.55±0.632

73.89±0.05

68.79±0.523

69.88±0.05

7

73.44±0.06

74.56±0.03

71.46±0.542

77.46±0.04

74.56±0.03

79.98±.01

8

78.36±0.314

81.66±0.02

79.86±0.31

84.53±0.01

80.16±0.04

86.56±0.03

9

84.56±0.03

88.66±0.467

86.56±0.04

89.65±0.02

85.66±0.345

90.16±0.04

10

86±0.146

90.13±0.05

89.46±0.03

91±0.01

89.87±0.01

94.58±0.01

All values expressed as mean ± SD (n=3)

Table 36: Drug release of L7-L13

Time (min)

L7

L8

L9

L10

L11

L12

L13

0

0

0

0

0

0

0

0

1

16.56±0.04

20.56±0.04

18.46±0.05

13.56±0.05

12.55±0.01

9.56±0.05

8.56±0.425

2

26.55±0.05

29.65±0.05

25.46±0.146

24.63±0.03

20.33±0.05

19.87±0.01

15.65±0.347

3

38.79±0.01

38.46±0.02

34.56±0.364

36.87±0.01

32.46±0.031

21.59±0.324

23.49±0.387

4

47.36±0.05

46.78±0.451

40.13±0.87

43.56±0.06

41.38±0.415

35.49±0.631

30.44±0.14

5

54.65±0.03

53.25±0.01

49.65±0.125

54.68±0.04

49.50.056±

43.99±0.956

39.76±0.462

6

67.89±0.136

63.54±0.02

51.32±0.236

61.65±0.03

53.66±0.03

54.87±0.843

43.56±0.25

7

76.56±0.05

72.46±0.05

60.15±0.123

78.36±0.01

69.78±0.01

61.47±0.14

51.36±0.12

8

83.56±0.06

88.13±0.136

79.56±0.654

82.56±0.364

72.35±0.54

67.84±01

59.34±0.05

9

89.46±0.05

84.56±0.122

87.65±0.321

88.46±0.325

79.88±0.12

70.16±0.2

67.23±0.631

10

92.46±0.01

98.99±0.687

93±0.487

92±0.02

83±0.51

73±0.514

71±0.47

Figure 24: Drug Release of L1-L13

Kinetic analysis of drug release-

In order to define the release mechanism that gives the best description of the release pattern; the in vitro release data for all optimized batches were fitted to kinetic equations models. The kinetic equations were used i.e., zero, first-order and Higuchi model. Both the kinetic rate constant (k) and the determination coefficient (R2) were calculated and presented in below graphs. The best fit model with the highest determination coefficient (R2) value for optimized batch was Zero order model.

Figure 25: Zero order model of L1-L13

Table 37: Zero Order Model (L8)

Zero Order Model

Formulation Code

R2 Value

L8

0.9809

Figure 26: First order model of L1-L13

Table 38: First Order Model (L8)

First Order Model

 

Formulation Code

R2 Value

L8

0.6074

Figure 27: Higuchi Model of L1-L13

Table 39: Higuchi Model (L8)

Higuchi Model

Formulation Code

R2 Value

L8

0.954

ANOVA for 2FI model Response 3: Drug release

Source

Sum Squares

of

df

Mean Square

F-

value

p-

value

 

Model

648.41

6

108.07

4.67

0.0413

significant

A-Sodium carboxymethyl

cellulose

29.84

1

29.84

1.29

0.2993

 

B-Sodium

glycolate

starch

97.37

1

97.37

4.21

0.0860

 

C-glycerol

303.56

1

303.56

13.13

0.0110

 

AB

30.25

1

30.25

1.31

0.2962

 

AC

178.36

1

178.36

7.72

0.0321

 

BC

9.03

1

9.03

0.3906

0.5550

 

Residual

138.71

6

23.12

 

 

 

Cor Total

787.12

12

 

 

 

 

Final Equation in Terms of Actual Factors

Drug release

=

+274.99738

 

-0.261069

Sodium carboxymethyl cellulose

-14.18375

Sodium starch glycolate

-101.56750

glycerol

+0.013750

Sodium carboxymethyl cellulose * Sodium starch glycolate

+0.133550

Sodium carboxymethyl cellulose * glycerol

+6.01000

Sodium starch glycolate * glycerol

The equation in terms of actual factors can be used to make predictions about the response for given levels of each factor. Here, the levels should be specified in the original units for each factor. This equation should not be used to determine the relative impact of each factor because the coefficients are scaled to accommodate the units of each factor and the intercept is not at the center of the design space.

Figure 28: Counter plot

Figure 29: Predicted vs Actual plot

Figure: 30 3D Surface plot

7.2.12 Ex- vivo diffusion study

The ex-vivo diffusion study demonstrates that L8 is the optimized batch, showing superior performance among formulations L1-L13. L8 exhibits rapid initial drug permeation at 1 minute (19.63% ± 0.03), maintains high permeation at 5 minutes (54.18% ± 0.03), and achieves near- complete permeation at 10 minutes (97.89% ± 0.51).      

Table 40:  Drug permeation of L1-L7

Time (min)

L1

L2

L3

L4

L5

L6

L7

0

0

0

0

0

0

0

0

1

12.56±0

.12

13.46±0.

05

15.60±0.

02

14.32±0.05

4

18.97±0.06

14.56±00

.03

14.35±

0.06

2

24.53±0

.02

38.79±0.

31

29.87±0.

01

26.54±0.03

6

28.46±0.01

23.55±0.

01

25.46±0

.02

3

39.87±0

.05

39.74±0.

01

34.12±0.

146

38.78±0.74

3

37.40.056±0

.453

32.45±0.

06

35.46±0

.03

4

49.46±0

.06

47.13±0.

02

45.66±0.

036

40.12±0.32

4

42.33±0.221

40.18±0.

01

45.56±0

.01

5

57.32±0

.01

57.88±0.

03

56.49±0.

045

51.46±0.34

7

54.79±0.654

50.16±0.

05

53.65±0

.05

6

68.74±0

.05

67.36±0.

354

68.47±0.

01

63.48±0.51

113

62.15±0.716

64.53±0.

01

66.49±0

.01

8

79.85±0

.06

80.16±0.

345

78.46±0.

02

67.16±0.02

65.49±0.02

72.13±0.

05

73.56±0

.06

9

82.46±0

.05

80.46±0.

06

86.45±0.

04

78.45±0.01

76.88±0.01

84.56±0.

06

86.65±0

.01

10

89.12±0

.01

90.12±0.

04

89.71±0.

123

87.89±0.00

3

91.11±0.05

93.56±0.

01

90.12±0

.01

All values expressed as mean ±STD

Table 41: Drug permeation of L8-L13

Time (min)

L8

L9

L10

L11

L12

L13

0

0

0

0

0

0

0

1

19.63±0.03

15.32±0.01

13.46±0.18

12.01±0.01

11.87±0.87

14.56±0.06

2

38.79±0.01

26.53±0.35

20.46±0.97

21.35±0.02

18.96±0.364

21.56±0.07

3

38.79±0.04

37.89±0.14

37.46±0.87

34.55±0.79

29.56±0.254

30.16±0.05

4

49.78±0.14

43.56±0.34

48.32±0.78

49.97±0.87

37.13±0.387

40.13±0.03

5

54.18±0.03

53.14±0.65

58.94±0.65

52.36±0.54

46.25±0.964

51.36±0.54

6

65.87±0.05

65.44±0.33

69.88±0.34

67.46±0.94

53.44±0.03

61.45±0.63

8

75.59±0.04

78.93±0.62

77.65±0.34

78.98 ±0.1

64.31±0.04

72.36±0.74

9

87.89±0.01

86.54±0.87

89.13±0.12

80.16±0.02

75.66±0.05

81.13±0.34

10

97.89±0.51

94.56±0.961

91.23±0.47

88.87±0.01

80.13±0.03

89.56±0.01

Figure 31: % Drug Permeation of L1-L13

7.2.13 Stability study

The stability studies of the L8 optimized batch indicate excellent stability over a 90-day period. The drug content remains consistent at 96.48% throughout the study, demonstrating that the active ingredient's concentration does not degrade over time.

Table 41: Stability studies data of L8 optimized batch

Sr.no

Time in days

Drug Content (%)

Disintegration time

(sec)

In –vitro drug release (%)

1.

Initial (0 days)

96.48

22

98.99

2.

1 month (30 days)

96.48

22

98.99

3.

3 months(90days)

96.48

21

98.78

CONCLUSION

The formulation study of Lisinopril tablets identified Batch L8 as the most promising candidate due to its superior physical and chemical properties. It displayed consistent weight, ideal pH, appropriate viscosity, high drug content, and an excellent in vitro release profile, with 98.67% of the drug released over 12 hours. The stability of Batch L8 was confirmed through zeta potential measurements and long-term stability testing, making it a suitable candidate for further development and potential clinical application

REFERENCE

  1. Mahajan A, Chhabra N, Aggarwal G. Formulation and characterization of fast dissolving buccal films: A review. Der Pharm Lett. 2011;3(1):152-65.
  2. Suresh B, Halloran D, James L. Quick dissolving films: A novel approach to drug delivery. Drug Development Technology. 2006:1-7.
  3. Patel AR, Prajapati DS, Raval JA. Fast dissolving films (FDFs) as a newer venture in fast dissolving dosage forms. Int. J. Drug Dev. Res. 2010 Apr;2(2):232-4.
  4. Keshavarao KP, Mudit D, Gunashekara K, Anis S, Singh Mangla N, Ajay K. Formulation and evaluation of mouth dissolving film containing Rofecoxib. IRJP. 2011;2(3):273-8.
  5. Cilurzo F, Cupone IE, Minghetti P, Selmin F, Montanari L. Fast dissolving films made of maltodextrins. European Journal of Pharmaceutics and Biopharmaceutics. 2008 Nov 1;70(3):895-900.
  6. Dixit RP, Puthli SP. Oral strip technology: Overview and future potential. Journal of controlled release. 2009 Oct 15;139(2):94-107.
  7. Radhakisan UR, Chavan V, Tribhuvan N. Mouth dissolving film and their patent: An overview. International Research Journal of Pharmacy. 2012;3(9):39-42.
  8. Lodhi DS, Panwar AS, Golani P, Verma M. A Review Of The Combination Of Xanthine And Bronchodilator Drug In Mouth-Dissolving Film For Asthma Treatment”. Structure. 2021; 4:5.
  9. Eixarch H, Haltner-Ukomadu E, Beisswenger C, Bock U. Drug delivery to the lung: permeability and physicochemical characteristics of drugs as the basis for a pulmonary biopharmaceutical classification system (pBCS). Journal of Epithelial Biology & Pharmacology. 2010 Jan 13;3(1).
  10. Sheoran R. Fast dissolving oral films: a review with future prospects. International journal of pharmaceutical education and research. 2018 May;12(2):15-32.
  11. Goa KL, Balfour JA, Zuanetti G. Lisinopril: a review of its pharmacology and clinical efficacy in the early management of acute myocardial infarction. Drugs. 1996 Oct;52(4):564-88.
  12. Irfan M, Rabel S, Bukhtar Q, Qadir MI, Jabeen F, Khan A. Orally disintegrating films: A modern expansion in drug delivery system. Saudi pharmaceutical journal. 2016 Sep 1;24(5):537-46.
  13. Sharma D, Kaur D, Verma S, Singh D, Singh M, Singh G, Garg R. Fast dissolving oral films technology: A recent trend for an innovative oral drug delivery system. International Journal of Drug Delivery. 2015 Oct 12;7(2):60-75.
  14. Arunachalam A, Karthikeyan M, Kumar SA, Konam K, Prasad PH, Sethuraman S, Manidipa S. Fast dissolving drug delivery system: A review. Journal of global trends in pharmaceutical sciences. 2010 Oct;1(1):92-110.
  15. Sakellariou P, Rowe RC. Interactions in cellulose derivative films for oral drug delivery. Progress in polymer science. 1995 Jan 1;20(5):889-942.
  16. Banker GS. Film coating theory and practice. Journal of pharmaceutical sciences. 1966 Jan;55(1):81-9.
  17. Juluru NS. Fast dissolving oral films: A review. IJAPBC. 2013 Jan;2(1):108-12.
  18. Arya A, Chandra A, Sharma V, Pathak K. Fast dissolving oral films: an innovative drug delivery system and dosage form. International Journal of ChemTech Research. 2010 Jan 1;2(1):576-83.
  19. Chonkar AD, Bhagawati ST, Udupa N. An overview on fast dissolving oral films. Asian Journal of Pharmacy and Technology. 2015;5(3):129-37.
  20. Prakash I, DuBois GE, Clos JF, Wilkens KL, Fosdick LE. Development of rebiana, a natural, non-caloric sweetener. Food and Chemical Toxicology. 2008 Jul 1;46(7):S75- 82.
  21. Panda BP, Dey NS, Rao ME. Development of innovative orally fast disintegrating film dosage forms: a review. International Journal of Pharmaceutical Sciences and Nanotechnology. 2012 Jul;5(2):1666-74.
  22. Dave RH, Shah DA, Patel PG. Development and evaluation of high loading oral dissolving film of aspirin and acetaminophen. Journal of pharmaceutical sciences and pharmacology. 2014 Jun 1;1(2):112-22.
  23. Salawi A. An insight into preparatory methods and characterization of orodispersible film—A review. Pharmaceuticals. 2022 Jul 9;15(7):844.
  24. Patel DM, Patel DJ, Darji PJ. Formulation and evaluation of fast dissolving film of cetirizine & Dextromethorphan. Int Jr Ph Sci &Nanotech. 2016;9(3):3305-11.
  25. Kshirsagar T, Jaiswal N, Chavan G, Zambre K, Ramkrushna S, Dinesh D. Formulation & evaluation of fast dissolving oral film. World J. Pharm. Res. 2021 Jul;10(9):503-61.
  26. Gholve S, Savalsure S, Bhusnure O, Suryavanshi S, Birajdar M. Formulation and evaluation of oral fast dissolving sublingual film of propranolol HCl. International Journal of Pharma Research and Health Sciences. 2018;6(2):65-72.
  27. Bhyan B, Jangra S, Kaur M, Singh H. Orally fast dissolving films: innovations in formulation and technology. Int J Pharm Sci Rev Res. 2011 Jul;9(2):9-15.
  28. Dixit RP, Puthli SP. Oral strip technology: Overview and future potential. Journal of controlled release. 2009 Oct 15;139(2):94-107.
  29. Deshmane S, Joshi UM, Channawar MA, Biyani KR, Chandewar A. Design and characterization of carbopol-HPMC-ethyl cellulose based buccal compact containing propranolol HCl. Indian Journal of Pharmaceutical Education and Research. 2010 Jul 1;44(3):253-8.
  30. Khairnar A, Jain P, Baviskar D, Jain D. Development of mucoadhesive buccal patch containing aceclofenac: in vitro evaluations. Int J PharmTech Res. 2009 Oct;1(4):978- 81.
  31. Han JH, Floros JD. Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. Journal of Plastic Film & Sheeting. 1997 Oct;13(4):287-98.
  32. Chana-Thaworn J, Chanthachum S, Wittaya T. Properties and antimicrobial activity of edible films incorporated with kiam wood (Cotyleobium lanceotatum) extract. LWT- Food Science and Technology. 2011 Jan 1;44(1):284-92.
  33. Hoque N, Alam F, Sarkar D, Yakin J, Ahmed SA, Pathak BJ, Judder MI, Dash B, Panigrahy UP, Alam F, Sarkar D. Formulation And Evaluation Of Fast- Dissolving Oral Disintegrated Film Of Valdecoxib.
  34. Baranauskaite J, Ockun MA, Uner B, Gungor B, Duman G, Tas C, Yesilada E. Development and In vitro characterization of pullulan fast dissolving films loaded with Panax ginseng extract, antioxidant properties and cytotoxic efficiency on lung and breast cancer cell lines. Journal of Drug Delivery Science and Technology. 2022 Oct 1; 76:103701.
  35. Lynthong B, Bhavya Shree T, Kamath K, Shabaraya AR. Oro-Dispersible Film: An Effective Approach for the Quick Drug Release.
  36. Kheawfu K, Kaewpinta A, Chanmahasathien W, Rachtanapun P, Jantrawut P. Extraction of nicotine from tobacco leaves and development of fast dissolving nicotine extract film. Membranes. 2021 May 28;11(6):403.
  37. Sharma A, Agarwal D. Formulation and Evaluation of Montelukast Sodium Oral Dissolving Film. Asian Journal of Pharmaceutical Research and Development. 2021 Feb 15;9(1):130-40.
  38. Kshitija P. Deshmukh, Sayyad Sohail. Formulation and Evaluation Of Fast Dissolving Oral Films.wjpps.20211 (1).396-406.
  39. Patil SS, Patil SJ, Vakhariya RR, Chopade AR, Mohite SK. Formulation and Evaluation of Fast Dissolving Buccal Film of Curcumin as Promising Route of Buccal Delivery.
  40. Bilal Q, Unhale S, Shelke S, Kale P, Sarode P, Biyani D. A review on mouth dissolving films. Eur. J. Pharm. Med. Res. 2020; 7:232-8.
  41. Shendge RS, Salunkhe KS, Girish K. Formulation And Evaluation Of Fast Dissolving Sublingual Film Of Antihistamine Drug. European Journal of Molecular & Clinical Medicine.;7(4):2020.
  42. Tizkam HH, Fadhil OQ, Ghazy E. Formulation and Evaluation of Metoclopramide Fast Dissolving Film (FDF). Syst. Rev. Pharm. 2020 Dec 1; 11:1641-6.
  43. Qin ZY, Jia XW, Liu Q, Kong BH, Wang H. Fast dissolving oral films for drug delivery prepared from chitosan/pullulan electrospinning nanofibers. International journal of biological macromolecules. 2019 Sep 15; 137:224-31.
  44. Raza SN, Kar AH, Wani TU, Khan NA. Formulation and evaluation of mouth dissolving films of losartan potassium using 32 factorial design. Int. J. Pharm. Sci. Res. 2019;10(3):1402-11.
  45. Palepu S. Preparation and evaluation of fast dissolving sublingual film of lisinopril. Journal of Drug Delivery and Therapeutics. 2019 Feb 15;9(1-s):101-6.
  46. Gupta P, Bisht A, Rao DN. Fast dissolving oral films: a comprehensive review. World Journal of Pharmaceutical            and Medical               Research, Wjpmr. 2019;5(7):116-27.
  47. Bala R, Sharma S. Formulation optimization and evaluation of fast dissolving film of aprepitant by using design of experiment. Bulletin of Faculty of Pharmacy, Cairo University. 2018 Dec 1;56(2):159-68.
  48. Harshitha KN, Shruthi BN, ST B. Design and Characterization of Fast Dissolving Films of Cilnidipine Solid Dispersions.
  49. Gholve S, Savalsure S, Bhusnure O, Suryavanshi S, Birajdar M. Formulation and evaluation of oral fast dissolving sublingual film of propranolol HCl. International Journal of Pharma Research and Health Sciences. 2018;6(2):65-72.
  50. Thonte SS, Pentewar RS, Bhusnure OG, Gholve SB, Gaikwad VM, Pujdekar AA. Formulation and evaluation of oral fast dissolving film of glipizide. W Jr Ph Res. 2017 May 10;6(7):1279-97.
  51. Rajeswari D, Babu BN, Desu PK, Rao PV, Anitha B. Formulation and Evaluation of fast dissolving films of Telmisartan. World Journal of Pharmacy and Pharmaceutical Sciences. 2017 Sep 11;6(11):1038-47.
  52. Kathpalia H, Patil A. Formulation and Evaluation of Orally Disintegrating Films of Levocetirizine Dihydrochloride. Indian Journal of Pharmaceutical Sciences. 2017 Mar 1;79(2).
  53. Mor J, Dubey V, Jalwal P. Formulation and evaluation of oral dissolving films of lisinopril. IntJResPharmSci2016.;1:34-8.
  54. Ali MS, Vijendar C, Kumar SD, Krishnaveni J. Formulation and evaluation of fast dissolving oral films of diazepam. Journal of pharmacovigilance. 2016 May 28; 4(3):1- 5.
  55. Kothapuvari PK, Rawat S, Kadimpati KK. Preparation of fast dissolving oral films of new generation anti migraine drugs by solvent casting method. Int J Current Res. 2016;8(5):30704-10.
  56. Ayorinde JO, Odeniyi MA, Balogun-Agbaje O. Formulation and Evaluation of Oral Dissolving Films of Amlodipine Besylate Using Blends of Starches With Hydroxypropyl Methyl Cellulose. Polimery w Medycynie. 2016 Jan 1;46(1).
  57. Soni MM, Patel KR. Formulation and evaluation of fast dissolving film of lurasidone Hcl. Int. J. Pharm. Res. Bio. Sci. 2016;5(2):101-23.
  58. Jani R, Patel R, Shah P. Formulation and evaluation of orodispersible film of hydroxyzine hydrochloride. World J Pharm Res. 2015 Jul 4; 4:754-0.
  59. Hanif M, Zaman M, Chaurasiya V. Polymers used in buccal film: a review. Designed Monomers and Polymers. 2015 Feb 17;18(2):105-11.
  60. Rajashekar. M, Rashmi. B, Sravanthi. Ch, Nagaraju.T, Shravan Kumar. Y, Madhusudhan Rao. Y.Formulation and Evaluation of Lisinopril Fast Disintegrating Films and Tablets. J.PHARM.SCI. TECH. MGMT. (2015);1 (1 ) ,48-71.
  61. Sharma D, Kaur D, Verma S, Singh D, Singh M, Singh G, Garg R. Fast dissolving oral films technology: A recent trend for an innovative oral drug delivery system. International Journal of Drug Delivery. 2015 Oct 12;7(2):60-75.
  62. Kurmi R, Ganju K, Lodhi DS, Chouksey K. Formulation, development and evaluation of fast dissolving oral film of anti-migraine drug. World Journal of Pharmaceutical and Medical Research. 2015;8.
  63. Maheswari KM, Devineni PK, Deekonda S, Shaik S, Uppala NP, Nalluri BN. Development and evaluation of mouth dissolving films of amlodipine besylate for enhanced therapeutic efficacy. Journal of pharmaceutics. 2014;2014.
  64. Deepthi A, Reddy BV, Navaneetha K. Formulation and evaluation of fast dissolving oral films of zolmitriptan. American journal of advanced drug delivery. 2014;2(2):153- 63.
  65. Deepthi A, Reddy BV, Navaneetha K. Formulation and evaluation of fast dissolving oral films of zolmitriptan. American journal of advanced drug delivery. 2014;2(2):153- 63.
  66. Parhi R. Improvement Of Dissolution Rate Of Indomethacin From Fast Dissolving Tablets. Indonesian Journal of Pharmacy. 2014 Jul 1;25(3):198.
  67. Kurra N, Baru CR, Vidyadhara KP. Vanitha. Formulation and evaluation of fast dissolving sublingual lisinopril tablets. Indo American Journal of Pharmaceutical Sciences. 2014;1(6):378-91.
  68. Bansal S, Bansal M, Garg G. Formulation and evaluation of fast dissolving film of an antihypertensive drug. International Journal of Pharmaceutical, Chemical & Biological Sciences. 2013 Oct 1;3(4).
  69. Bhagwat DA. Formulation and evaluation of fast dissolving buccal patch of olmesartan medoxomil. Asian Journal of Biomedical and Pharmaceutical Sciences. 2013 Jun 1;3(21):51.
  70. Raju PN, Kumar MS, Reddy CM, Ravishankar K. Formulation and evaluation of fast dissolving films of loratidine by solvent casting method. The pharma innovation. 2013 Apr 1; 2(2).
  71. Kumria R, Gupta V, Bansal S, Wadhwa J, Nair AB. Oral buccoadhesive films of ondansetron: development and evaluation. International journal of pharmaceutical investigation. 2013 Apr;3(2):112.
  72. Mandeep K, Rana AC, Nimrata S. Fast Dissolving Films: An Innovative Drug Delivery System. International Journal of Pharmaceutical Research & Allied Sciences. 2013 Jan 1;2(1).
  73. Thonte, S. S., et al. Pandey GS, Kumar R, Sharma R, Singh Y, Teotia UV. Development and optimization of oral fast dissolving film of salbutamol sulphate by design of experiment. Am. J. PharmTech Res. 2013;3(4):407-23.
  74. Londhe VY, Umalkar KB. Formulation development and evaluation of fast dissolving film of telmisartan. Indian Journal of Pharmaceutical Sciences. 2012 Mar;74(2):122.
  75. Lisinopril: Uses, Interactions, Mechanism of Action | DrugBank Online (Access date 2024)
  76. Sodium carboxymethyl cellulose | C8H15NaO8 | CID 23706213 - PubChem (nih.gov)
  77. Sodium glycolate | C2H3NaO3 | CID 517347 - PubChem (nih.gov)
  78. Glycerin | C3H8O3 | CID 753 - PubChem (nih.gov)
  79. Saccharin sodium | C7H4NNaO3S | CID 656582 - PubChem (nih.gov)
  80. Menthol | C10H20O | CID 1254 - PubChem (nih.gov)
  81. Pawar R, Sharma R, Darwhekar G. Formulation and evaluation of mouth dissolving film of prochlorperazine maleate. Journal of Drug Delivery and Therapeutics. 2019 Nov 15;9(6):110-5.
  82. Shah KA, Gao B, Kamal R, Razzaq A, Qi S, Zhu QN, Lina S, Huang L, Cremin G, Iqbal H, Menaa F. Development and characterizations of pullulan and maltodextrin-based oral fast-dissolving films employing a box–behnken experimental design. Materials. 2022 May 18;15(10):3591.
  83. Mokhtar M, Sammour OA, Hammad MA, Megrab NA. Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes. International journal of pharmaceutics. 2008 Sep 1;361(1-2):104-11.
  84. Rokade PS, Patil PM. Development and validation of analytical method for estimation of 5-Fluorouracil in bulk and marketed formulation by UV- spectrophotometer. J Pharm Sci Rev Res. 2017; 42:8-11.
  85. Wade A, Weller PJ. Benzalkonium Chloride. Benzethonium Chloride,"" Cetrimide," in: Handbook of Pharmaceutical Excipients, American Pharmaceutical Association, Washington, DC. 1994:27-31.
  86. Paolino D, Cosco D, Muzzalupo R, Trapasso E, Picci N, Fresta M. Innovative bolasurfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer. International journal of Pharmaceutics. 2008 Apr 2;353(1-2):233-42.
  87. Pathan A, Gupta MK, Jain NK, Dubey A, Agrawal A. Formulation and evaluation of fast dissolving oral film of promethazine hydrochloride using different surfactant. J. Innov. Pharm. Bio. Sci. 2016;3(1):74-84.
  88. Chavan DU, Marques SM, Bhide PJ, Kumar L, Shirodkar RK. Rapidly dissolving felodipine nanoparticle strips-formulation using design of experiment and characterisation. Journal of Drug Delivery Science and Technology. 2020 Dec 1; 60:102053.
  89. Pathan A, Gupta MK, Jain NK, Dubey A, Agrawal A. Formulation and evaluation of fast dissolving oral film of promethazine hydrochloride using different surfactant. J. Innov. Pharm. Bio. Sci. 2016;3(1):74-84.
  90. Nalluri BN, Sravani B, Anusha VS, Sribramhini R, Maheswari KM. Development and evaluation of mouth dissolving films of sumatriptan succinate for better therapeutic efficacy. Journal of applied pharmaceutical science. 2013 Aug 30;3(8):161-6.
  91. Bharti K, Mittal P, Mishra B. Formulation and characterization of fast dissolving oral films containing buspirone hydrochloride nanoparticles using design of experiment. Journal of Drug Delivery Science and Technology. 2019 Feb 1; 49:420-32.
  92. Chougule PC. Design and evaluation of formulated mouth dissolving film of domperidone and study the effect of concentration of polymers on drug release. Asian Journal of Pharmaceutics (AJP). 2017;11(04).
  93. Ramzan M, Gourion-Arsiquaud S, Hussain A, Gulati JS, Zhang Q, Trehan S, Puri V, Michniak-Kohn B, Kaur IP. In vitro release, ex vivo penetration, and in vivo dermatokinetics of ketoconazole-loaded solid lipid nanoparticles for topical delivery. Drug Delivery and Translational Research. 2022 Jul 1:1-25.
  94. Patel DM, Patel DJ, Darji PJ. Formulation and evaluation of fast dissolving film of cetirizine & Dextromethorphan. Int Jr Ph Sci &Nanotech. 2016;9(3):3305-11.

Reference

  1. Mahajan A, Chhabra N, Aggarwal G. Formulation and characterization of fast dissolving buccal films: A review. Der Pharm Lett. 2011;3(1):152-65.
  2. Suresh B, Halloran D, James L. Quick dissolving films: A novel approach to drug delivery. Drug Development Technology. 2006:1-7.
  3. Patel AR, Prajapati DS, Raval JA. Fast dissolving films (FDFs) as a newer venture in fast dissolving dosage forms. Int. J. Drug Dev. Res. 2010 Apr;2(2):232-4.
  4. Keshavarao KP, Mudit D, Gunashekara K, Anis S, Singh Mangla N, Ajay K. Formulation and evaluation of mouth dissolving film containing Rofecoxib. IRJP. 2011;2(3):273-8.
  5. Cilurzo F, Cupone IE, Minghetti P, Selmin F, Montanari L. Fast dissolving films made of maltodextrins. European Journal of Pharmaceutics and Biopharmaceutics. 2008 Nov 1;70(3):895-900.
  6. Dixit RP, Puthli SP. Oral strip technology: Overview and future potential. Journal of controlled release. 2009 Oct 15;139(2):94-107.
  7. Radhakisan UR, Chavan V, Tribhuvan N. Mouth dissolving film and their patent: An overview. International Research Journal of Pharmacy. 2012;3(9):39-42.
  8. Lodhi DS, Panwar AS, Golani P, Verma M. A Review Of The Combination Of Xanthine And Bronchodilator Drug In Mouth-Dissolving Film For Asthma Treatment”. Structure. 2021; 4:5.
  9. Eixarch H, Haltner-Ukomadu E, Beisswenger C, Bock U. Drug delivery to the lung: permeability and physicochemical characteristics of drugs as the basis for a pulmonary biopharmaceutical classification system (pBCS). Journal of Epithelial Biology & Pharmacology. 2010 Jan 13;3(1).
  10. Sheoran R. Fast dissolving oral films: a review with future prospects. International journal of pharmaceutical education and research. 2018 May;12(2):15-32.
  11. Goa KL, Balfour JA, Zuanetti G. Lisinopril: a review of its pharmacology and clinical efficacy in the early management of acute myocardial infarction. Drugs. 1996 Oct;52(4):564-88.
  12. Irfan M, Rabel S, Bukhtar Q, Qadir MI, Jabeen F, Khan A. Orally disintegrating films: A modern expansion in drug delivery system. Saudi pharmaceutical journal. 2016 Sep 1;24(5):537-46.
  13. Sharma D, Kaur D, Verma S, Singh D, Singh M, Singh G, Garg R. Fast dissolving oral films technology: A recent trend for an innovative oral drug delivery system. International Journal of Drug Delivery. 2015 Oct 12;7(2):60-75.
  14. Arunachalam A, Karthikeyan M, Kumar SA, Konam K, Prasad PH, Sethuraman S, Manidipa S. Fast dissolving drug delivery system: A review. Journal of global trends in pharmaceutical sciences. 2010 Oct;1(1):92-110.
  15. Sakellariou P, Rowe RC. Interactions in cellulose derivative films for oral drug delivery. Progress in polymer science. 1995 Jan 1;20(5):889-942.
  16. Banker GS. Film coating theory and practice. Journal of pharmaceutical sciences. 1966 Jan;55(1):81-9.
  17. Juluru NS. Fast dissolving oral films: A review. IJAPBC. 2013 Jan;2(1):108-12.
  18. Arya A, Chandra A, Sharma V, Pathak K. Fast dissolving oral films: an innovative drug delivery system and dosage form. International Journal of ChemTech Research. 2010 Jan 1;2(1):576-83.
  19. Chonkar AD, Bhagawati ST, Udupa N. An overview on fast dissolving oral films. Asian Journal of Pharmacy and Technology. 2015;5(3):129-37.
  20. Prakash I, DuBois GE, Clos JF, Wilkens KL, Fosdick LE. Development of rebiana, a natural, non-caloric sweetener. Food and Chemical Toxicology. 2008 Jul 1;46(7):S75- 82.
  21. Panda BP, Dey NS, Rao ME. Development of innovative orally fast disintegrating film dosage forms: a review. International Journal of Pharmaceutical Sciences and Nanotechnology. 2012 Jul;5(2):1666-74.
  22. Dave RH, Shah DA, Patel PG. Development and evaluation of high loading oral dissolving film of aspirin and acetaminophen. Journal of pharmaceutical sciences and pharmacology. 2014 Jun 1;1(2):112-22.
  23. Salawi A. An insight into preparatory methods and characterization of orodispersible film—A review. Pharmaceuticals. 2022 Jul 9;15(7):844.
  24. Patel DM, Patel DJ, Darji PJ. Formulation and evaluation of fast dissolving film of cetirizine & Dextromethorphan. Int Jr Ph Sci &Nanotech. 2016;9(3):3305-11.
  25. Kshirsagar T, Jaiswal N, Chavan G, Zambre K, Ramkrushna S, Dinesh D. Formulation & evaluation of fast dissolving oral film. World J. Pharm. Res. 2021 Jul;10(9):503-61.
  26. Gholve S, Savalsure S, Bhusnure O, Suryavanshi S, Birajdar M. Formulation and evaluation of oral fast dissolving sublingual film of propranolol HCl. International Journal of Pharma Research and Health Sciences. 2018;6(2):65-72.
  27. Bhyan B, Jangra S, Kaur M, Singh H. Orally fast dissolving films: innovations in formulation and technology. Int J Pharm Sci Rev Res. 2011 Jul;9(2):9-15.
  28. Dixit RP, Puthli SP. Oral strip technology: Overview and future potential. Journal of controlled release. 2009 Oct 15;139(2):94-107.
  29. Deshmane S, Joshi UM, Channawar MA, Biyani KR, Chandewar A. Design and characterization of carbopol-HPMC-ethyl cellulose based buccal compact containing propranolol HCl. Indian Journal of Pharmaceutical Education and Research. 2010 Jul 1;44(3):253-8.
  30. Khairnar A, Jain P, Baviskar D, Jain D. Development of mucoadhesive buccal patch containing aceclofenac: in vitro evaluations. Int J PharmTech Res. 2009 Oct;1(4):978- 81.
  31. Han JH, Floros JD. Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. Journal of Plastic Film & Sheeting. 1997 Oct;13(4):287-98.
  32. Chana-Thaworn J, Chanthachum S, Wittaya T. Properties and antimicrobial activity of edible films incorporated with kiam wood (Cotyleobium lanceotatum) extract. LWT- Food Science and Technology. 2011 Jan 1;44(1):284-92.
  33. Hoque N, Alam F, Sarkar D, Yakin J, Ahmed SA, Pathak BJ, Judder MI, Dash B, Panigrahy UP, Alam F, Sarkar D. Formulation And Evaluation Of Fast- Dissolving Oral Disintegrated Film Of Valdecoxib.
  34. Baranauskaite J, Ockun MA, Uner B, Gungor B, Duman G, Tas C, Yesilada E. Development and In vitro characterization of pullulan fast dissolving films loaded with Panax ginseng extract, antioxidant properties and cytotoxic efficiency on lung and breast cancer cell lines. Journal of Drug Delivery Science and Technology. 2022 Oct 1; 76:103701.
  35. Lynthong B, Bhavya Shree T, Kamath K, Shabaraya AR. Oro-Dispersible Film: An Effective Approach for the Quick Drug Release.
  36. Kheawfu K, Kaewpinta A, Chanmahasathien W, Rachtanapun P, Jantrawut P. Extraction of nicotine from tobacco leaves and development of fast dissolving nicotine extract film. Membranes. 2021 May 28;11(6):403.
  37. Sharma A, Agarwal D. Formulation and Evaluation of Montelukast Sodium Oral Dissolving Film. Asian Journal of Pharmaceutical Research and Development. 2021 Feb 15;9(1):130-40.
  38. Kshitija P. Deshmukh, Sayyad Sohail. Formulation and Evaluation Of Fast Dissolving Oral Films.wjpps.20211 (1).396-406.
  39. Patil SS, Patil SJ, Vakhariya RR, Chopade AR, Mohite SK. Formulation and Evaluation of Fast Dissolving Buccal Film of Curcumin as Promising Route of Buccal Delivery.
  40. Bilal Q, Unhale S, Shelke S, Kale P, Sarode P, Biyani D. A review on mouth dissolving films. Eur. J. Pharm. Med. Res. 2020; 7:232-8.
  41. Shendge RS, Salunkhe KS, Girish K. Formulation And Evaluation Of Fast Dissolving Sublingual Film Of Antihistamine Drug. European Journal of Molecular & Clinical Medicine.;7(4):2020.
  42. Tizkam HH, Fadhil OQ, Ghazy E. Formulation and Evaluation of Metoclopramide Fast Dissolving Film (FDF). Syst. Rev. Pharm. 2020 Dec 1; 11:1641-6.
  43. Qin ZY, Jia XW, Liu Q, Kong BH, Wang H. Fast dissolving oral films for drug delivery prepared from chitosan/pullulan electrospinning nanofibers. International journal of biological macromolecules. 2019 Sep 15; 137:224-31.
  44. Raza SN, Kar AH, Wani TU, Khan NA. Formulation and evaluation of mouth dissolving films of losartan potassium using 32 factorial design. Int. J. Pharm. Sci. Res. 2019;10(3):1402-11.
  45. Palepu S. Preparation and evaluation of fast dissolving sublingual film of lisinopril. Journal of Drug Delivery and Therapeutics. 2019 Feb 15;9(1-s):101-6.
  46. Gupta P, Bisht A, Rao DN. Fast dissolving oral films: a comprehensive review. World Journal of Pharmaceutical            and Medical               Research, Wjpmr. 2019;5(7):116-27.
  47. Bala R, Sharma S. Formulation optimization and evaluation of fast dissolving film of aprepitant by using design of experiment. Bulletin of Faculty of Pharmacy, Cairo University. 2018 Dec 1;56(2):159-68.
  48. Harshitha KN, Shruthi BN, ST B. Design and Characterization of Fast Dissolving Films of Cilnidipine Solid Dispersions.
  49. Gholve S, Savalsure S, Bhusnure O, Suryavanshi S, Birajdar M. Formulation and evaluation of oral fast dissolving sublingual film of propranolol HCl. International Journal of Pharma Research and Health Sciences. 2018;6(2):65-72.
  50. Thonte SS, Pentewar RS, Bhusnure OG, Gholve SB, Gaikwad VM, Pujdekar AA. Formulation and evaluation of oral fast dissolving film of glipizide. W Jr Ph Res. 2017 May 10;6(7):1279-97.
  51. Rajeswari D, Babu BN, Desu PK, Rao PV, Anitha B. Formulation and Evaluation of fast dissolving films of Telmisartan. World Journal of Pharmacy and Pharmaceutical Sciences. 2017 Sep 11;6(11):1038-47.
  52. Kathpalia H, Patil A. Formulation and Evaluation of Orally Disintegrating Films of Levocetirizine Dihydrochloride. Indian Journal of Pharmaceutical Sciences. 2017 Mar 1;79(2).
  53. Mor J, Dubey V, Jalwal P. Formulation and evaluation of oral dissolving films of lisinopril. IntJResPharmSci2016.;1:34-8.
  54. Ali MS, Vijendar C, Kumar SD, Krishnaveni J. Formulation and evaluation of fast dissolving oral films of diazepam. Journal of pharmacovigilance. 2016 May 28; 4(3):1- 5.
  55. Kothapuvari PK, Rawat S, Kadimpati KK. Preparation of fast dissolving oral films of new generation anti migraine drugs by solvent casting method. Int J Current Res. 2016;8(5):30704-10.
  56. Ayorinde JO, Odeniyi MA, Balogun-Agbaje O. Formulation and Evaluation of Oral Dissolving Films of Amlodipine Besylate Using Blends of Starches With Hydroxypropyl Methyl Cellulose. Polimery w Medycynie. 2016 Jan 1;46(1).
  57. Soni MM, Patel KR. Formulation and evaluation of fast dissolving film of lurasidone Hcl. Int. J. Pharm. Res. Bio. Sci. 2016;5(2):101-23.
  58. Jani R, Patel R, Shah P. Formulation and evaluation of orodispersible film of hydroxyzine hydrochloride. World J Pharm Res. 2015 Jul 4; 4:754-0.
  59. Hanif M, Zaman M, Chaurasiya V. Polymers used in buccal film: a review. Designed Monomers and Polymers. 2015 Feb 17;18(2):105-11.
  60. Rajashekar. M, Rashmi. B, Sravanthi. Ch, Nagaraju.T, Shravan Kumar. Y, Madhusudhan Rao. Y.Formulation and Evaluation of Lisinopril Fast Disintegrating Films and Tablets. J.PHARM.SCI. TECH. MGMT. (2015);1 (1 ) ,48-71.
  61. Sharma D, Kaur D, Verma S, Singh D, Singh M, Singh G, Garg R. Fast dissolving oral films technology: A recent trend for an innovative oral drug delivery system. International Journal of Drug Delivery. 2015 Oct 12;7(2):60-75.
  62. Kurmi R, Ganju K, Lodhi DS, Chouksey K. Formulation, development and evaluation of fast dissolving oral film of anti-migraine drug. World Journal of Pharmaceutical and Medical Research. 2015;8.
  63. Maheswari KM, Devineni PK, Deekonda S, Shaik S, Uppala NP, Nalluri BN. Development and evaluation of mouth dissolving films of amlodipine besylate for enhanced therapeutic efficacy. Journal of pharmaceutics. 2014;2014.
  64. Deepthi A, Reddy BV, Navaneetha K. Formulation and evaluation of fast dissolving oral films of zolmitriptan. American journal of advanced drug delivery. 2014;2(2):153- 63.
  65. Deepthi A, Reddy BV, Navaneetha K. Formulation and evaluation of fast dissolving oral films of zolmitriptan. American journal of advanced drug delivery. 2014;2(2):153- 63.
  66. Parhi R. Improvement Of Dissolution Rate Of Indomethacin From Fast Dissolving Tablets. Indonesian Journal of Pharmacy. 2014 Jul 1;25(3):198.
  67. Kurra N, Baru CR, Vidyadhara KP. Vanitha. Formulation and evaluation of fast dissolving sublingual lisinopril tablets. Indo American Journal of Pharmaceutical Sciences. 2014;1(6):378-91.
  68. Bansal S, Bansal M, Garg G. Formulation and evaluation of fast dissolving film of an antihypertensive drug. International Journal of Pharmaceutical, Chemical & Biological Sciences. 2013 Oct 1;3(4).
  69. Bhagwat DA. Formulation and evaluation of fast dissolving buccal patch of olmesartan medoxomil. Asian Journal of Biomedical and Pharmaceutical Sciences. 2013 Jun 1;3(21):51.
  70. Raju PN, Kumar MS, Reddy CM, Ravishankar K. Formulation and evaluation of fast dissolving films of loratidine by solvent casting method. The pharma innovation. 2013 Apr 1; 2(2).
  71. Kumria R, Gupta V, Bansal S, Wadhwa J, Nair AB. Oral buccoadhesive films of ondansetron: development and evaluation. International journal of pharmaceutical investigation. 2013 Apr;3(2):112.
  72. Mandeep K, Rana AC, Nimrata S. Fast Dissolving Films: An Innovative Drug Delivery System. International Journal of Pharmaceutical Research & Allied Sciences. 2013 Jan 1;2(1).
  73. Thonte, S. S., et al. Pandey GS, Kumar R, Sharma R, Singh Y, Teotia UV. Development and optimization of oral fast dissolving film of salbutamol sulphate by design of experiment. Am. J. PharmTech Res. 2013;3(4):407-23.
  74. Londhe VY, Umalkar KB. Formulation development and evaluation of fast dissolving film of telmisartan. Indian Journal of Pharmaceutical Sciences. 2012 Mar;74(2):122.
  75. Lisinopril: Uses, Interactions, Mechanism of Action | DrugBank Online (Access date 2024)
  76. Sodium carboxymethyl cellulose | C8H15NaO8 | CID 23706213 - PubChem (nih.gov)
  77. Sodium glycolate | C2H3NaO3 | CID 517347 - PubChem (nih.gov)
  78. Glycerin | C3H8O3 | CID 753 - PubChem (nih.gov)
  79. Saccharin sodium | C7H4NNaO3S | CID 656582 - PubChem (nih.gov)
  80. Menthol | C10H20O | CID 1254 - PubChem (nih.gov)
  81. Pawar R, Sharma R, Darwhekar G. Formulation and evaluation of mouth dissolving film of prochlorperazine maleate. Journal of Drug Delivery and Therapeutics. 2019 Nov 15;9(6):110-5.
  82. Shah KA, Gao B, Kamal R, Razzaq A, Qi S, Zhu QN, Lina S, Huang L, Cremin G, Iqbal H, Menaa F. Development and characterizations of pullulan and maltodextrin-based oral fast-dissolving films employing a box–behnken experimental design. Materials. 2022 May 18;15(10):3591.
  83. Mokhtar M, Sammour OA, Hammad MA, Megrab NA. Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes. International journal of pharmaceutics. 2008 Sep 1;361(1-2):104-11.
  84. Rokade PS, Patil PM. Development and validation of analytical method for estimation of 5-Fluorouracil in bulk and marketed formulation by UV- spectrophotometer. J Pharm Sci Rev Res. 2017; 42:8-11.
  85. Wade A, Weller PJ. Benzalkonium Chloride. Benzethonium Chloride,"" Cetrimide," in: Handbook of Pharmaceutical Excipients, American Pharmaceutical Association, Washington, DC. 1994:27-31.
  86. Paolino D, Cosco D, Muzzalupo R, Trapasso E, Picci N, Fresta M. Innovative bolasurfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer. International journal of Pharmaceutics. 2008 Apr 2;353(1-2):233-42.
  87. Pathan A, Gupta MK, Jain NK, Dubey A, Agrawal A. Formulation and evaluation of fast dissolving oral film of promethazine hydrochloride using different surfactant. J. Innov. Pharm. Bio. Sci. 2016;3(1):74-84.
  88. Chavan DU, Marques SM, Bhide PJ, Kumar L, Shirodkar RK. Rapidly dissolving felodipine nanoparticle strips-formulation using design of experiment and characterisation. Journal of Drug Delivery Science and Technology. 2020 Dec 1; 60:102053.
  89. Pathan A, Gupta MK, Jain NK, Dubey A, Agrawal A. Formulation and evaluation of fast dissolving oral film of promethazine hydrochloride using different surfactant. J. Innov. Pharm. Bio. Sci. 2016;3(1):74-84.
  90. Nalluri BN, Sravani B, Anusha VS, Sribramhini R, Maheswari KM. Development and evaluation of mouth dissolving films of sumatriptan succinate for better therapeutic efficacy. Journal of applied pharmaceutical science. 2013 Aug 30;3(8):161-6.
  91. Bharti K, Mittal P, Mishra B. Formulation and characterization of fast dissolving oral films containing buspirone hydrochloride nanoparticles using design of experiment. Journal of Drug Delivery Science and Technology. 2019 Feb 1; 49:420-32.
  92. Chougule PC. Design and evaluation of formulated mouth dissolving film of domperidone and study the effect of concentration of polymers on drug release. Asian Journal of Pharmaceutics (AJP). 2017;11(04).
  93. Ramzan M, Gourion-Arsiquaud S, Hussain A, Gulati JS, Zhang Q, Trehan S, Puri V, Michniak-Kohn B, Kaur IP. In vitro release, ex vivo penetration, and in vivo dermatokinetics of ketoconazole-loaded solid lipid nanoparticles for topical delivery. Drug Delivery and Translational Research. 2022 Jul 1:1-25.
  94. Patel DM, Patel DJ, Darji PJ. Formulation and evaluation of fast dissolving film of cetirizine & Dextromethorphan. Int Jr Ph Sci &Nanotech. 2016;9(3):3305-11.

Photo
Siddhesh Gawari
Corresponding author

Loknete Shri Dada patil pharate College of pharmacy

Photo
S. R. Ghodake
Co-author

Loknete Shri Dada patil pharate College of pharmacy

Siddhesh Gawari*, S. R. Ghodake, Formulation and Evaluation of Fast Dissolving Film of Lisinopril, Int. J. Sci. R. Tech., 2025, 2 (4), 664-689. https://doi.org/10.5281/zenodo.15304422

More related articles
Unveiling the Medicinal Potential of Dwarf Water C...
Arshin Solomon, Pragya Pandey, Meghna Singh , Faith Ruth Dixon , ...
The Medicinal Attributes of Delonix regia: An Expl...
Arshin Solomon, Pragya Pandey , Faith Ruth Dixon, Meghna Singh, A...
The Silent Passenger: The Medical Mystery of Fetus...
Dr. Rucha Phalke, Dr. Pradeepgoud Patil, Dr. Ashwin Patil, Dr. Sa...
In-Depth In-Silico Functional, And Structural Screening Of IL-4 Gene Variants Li...
Hamna Tariq, Aniqa Amir, Muhammad Saleem, Kainat Ramzan, Tuba Aslam, Mehmooda Asif, ...
The Nervous System Decoded: Structural Dynamics, Functional Integration, and Eme...
Arnab Roy, Soniya Kumari, Aman Kumar Singh, Raj Kumar Gupta, Anuj Kumar, ...
Related Articles
Overview Of In Vitro – Antioxidant Models...
Vishal Shewale , Shubham Pawar, Aakanksha Shewale , Nikita Sandhan , Priti Patle, Vaidehi Pawar , ...
Effect Of Milk and Water Kefir Granules in Sugar Solution...
Rongali Indu, Dr. M. Savitri, M. Swapna, B. Rama Madhuri, Dr. P. Uma Devi, ...
Evaluation Of Self Care Practices Among Known Type 2 Diabetic Patients in A Rura...
Dr. Sarmatha V., Satheeshkumar N., Dr. Sangameswaran B., Dr. Kannan S., Palanivel S., Ponnarasan T.,...
Unveiling the Medicinal Potential of Dwarf Water Clover (Marsilea minuta): A Com...
Arshin Solomon, Pragya Pandey, Meghna Singh , Faith Ruth Dixon , Arnab Roy, Akash Bhattacharjee , ...
More related articles
Unveiling the Medicinal Potential of Dwarf Water Clover (Marsilea minuta): A Com...
Arshin Solomon, Pragya Pandey, Meghna Singh , Faith Ruth Dixon , Arnab Roy, Akash Bhattacharjee , ...
The Medicinal Attributes of Delonix regia: An Exploratory Study of its Bioactive...
Arshin Solomon, Pragya Pandey , Faith Ruth Dixon, Meghna Singh, Aaron Dogba Yassah, Arnab Roy , ...
The Silent Passenger: The Medical Mystery of Fetus in Fetu...
Dr. Rucha Phalke, Dr. Pradeepgoud Patil, Dr. Ashwin Patil, Dr. Santosh Patil, ...
Unveiling the Medicinal Potential of Dwarf Water Clover (Marsilea minuta): A Com...
Arshin Solomon, Pragya Pandey, Meghna Singh , Faith Ruth Dixon , Arnab Roy, Akash Bhattacharjee , ...
The Medicinal Attributes of Delonix regia: An Exploratory Study of its Bioactive...
Arshin Solomon, Pragya Pandey , Faith Ruth Dixon, Meghna Singh, Aaron Dogba Yassah, Arnab Roy , ...
The Silent Passenger: The Medical Mystery of Fetus in Fetu...
Dr. Rucha Phalke, Dr. Pradeepgoud Patil, Dr. Ashwin Patil, Dr. Santosh Patil, ...