View Article

Abstract

Cancer is still the fourth major cause of morbidity and mortality despite the great progress made in the past few years in the understanding of the molecular mechanisms and the development of targeted therapeutic approaches. The very long and expensive timelines and the remarkably high failure rates that characterize the conventional drug development processes have lately brought attention to the concept of drug repositioning. Drug repositioning entails the search for new therapeutic applications for compounds that have long been approved and/or investigated for other diseases. This very appealing and innovative strategy has the capability to considerably reduce the costs and timelines associated with the drug development processes and also to overcome the safety concerns that are often caused by the conventional processes. This review aims to give a brief overview on the idea of the repositioning strategy for the treatment of cancer and its biological bases. The mechanisms that have the capability to behave in the role of antitumor compounds for those repositioned compounds include the interference of metabolic pathways, the prevention of angiogenesis, the induction of apoptosis and autophagy, the regulation of the immune system, the interference of the repair mechanisms for the DNAs, and the epigenetic mechanisms. The efficient repositioning compounds that have already demonstrated their therapeutic efficacy in the clinics are briefly discussed. Moreover, the promising techniques that have the ability to outline the new prospects for the repositioning strategy for the treatment of oncologic diseases in the near future are also briefly mentioned and discussed. This concerns the integration of the Artificial intelligence and big data for the repositioning strategy for the treatment of oncologic diseases. Additionally, the new concept for the repositioning strategy for the treatment of oncologic diseases also entails the concerns on intellectual property rights.

Keywords

Drug Repurposing, Cancer Therapeutics, Polypharmacology, Personalized Oncology

Introduction

Cancer is a group of several diseases that arise in a progressive manner due to uncontrolled cellular proliferation [1,2]. Although each has distinct properties, all contribute to the disease through basic mechanisms [3,4]. The cells in cancer can be malignant or normal. They proliferate when no signals are given, ignoring signals for its end or apoptosis. They induce vascular proliferation towards malignancies; supply oxygen and nutrition; remove toxic material. They also evade the immune system's attention so it does not hinder their proliferation and survival. Cancerous cells often have a large assortment of alterations in chromosomes. The cells become so dependent on them that they cannot function normally without those changes [5]. Tumor progression is usually depicted as stages of mutation and growth. A normal cell is converted into a malignant cell with less than 10 mutations [2,6]. Stages include initial mutation, hyperplasia, dysplasia, in situ cancer, and invasive/malignant tumors. In situ cancer is characterized by abnormal development and appearance of the cell and its progeny, while invasive/malignant tumors allow the tumor to disseminate to other tissues and discharge cells into the lymph or bloodstream, potentially generating new malignancies. Malignant tumors can metastasize across the body, contributing to targeted therapy resistance [3]. Cancer-critical genes usually fall into two main classes: proto-oncogenes and tumor suppressor genes [7]. Proto-oncogenes promote cell growth, while tumor suppressor genes halt the process. Changes in the genes may lead to the hyperactivity of proteins that support growth-promoting pathways, causing cells to proliferate at a faster rate than they would without mutation [2]. Most malignancies fall into three major categories, which are carcinomas, sarcomas, and leukemias or lymphomas. Human cancers are dominated by carcinomas, accounting for 90%; whereas sarcomas form solid tumors that invade connective tissues. The immune system and blood-forming cells are responsible for lymphomas and leukemias, respectively, and account for 8% of all human malignancies. Tumors are also classified based on their cell type and tissue of origin [8]. Radiation and chemical carcinogens induce mutations and DNA damage, and can be regarded as “initiating agents” since mutations in critical target genes represent the earliest event in the process leading to malignancy. [9]

2. Drug repurposing strategies

In summary, drug repurposing can be divided into three stages: identifying the core targets of the disease (hypothesis generation), determining the efficacy of the drug through in vitro and in vivo models and proceeding to phase II clinical trials in cases where phase I trials have yielded adequate data. [10-12] The inception stage is critical since hypothesis generation is the key to any drug repurposing endeavor. [13] Historically, drug repurposing in oncology has largely been driven by either an understanding of the disease pathways or through serendipitous findings. Thus, designing innovative strategies to match existing drugs with newfound applications could increase the success of drug repurposing. Identification of a potential repurposed drug can be made using computational and experimental methods. The experimental approach considers tools such as induced pluripotent stem cell models and function-first phenotypic screenings (or reverse chemical biology), [14,15] while computational methods use target-centric, knowledge-driven, signature-aligned, pathway-focused, and mechanism-specific strategies. [16,17] More often, these techniques are synergistically utilized. Notably, high-throughput screening using sophisticated models can identify compounds that mitigate disease symptoms without necessitating pre-existing knowledge about the drug-target interactions. [18,19] Current computational methodologies, such as merging drug effects with clinical disease signatures and model systems that predict disease-modifying effects, are available for the selection of drug candidates suitable for drug repurposing in cancer. These tools can identify ligands, decode drug ingredient binding schemas, and highlight promising candidates from an expansive list of potential compounds. [18,20,21] In summary, although the idea of drug repurposing is long-established, it is only recently that technological advances, such as the ones outlined in this article, have led to the development of cutting-edge strategies that can be consciously paired with novel indications.

Experimental Approaches

Organoid Models of Cancer

Organoids are described as “stem cell-containing self-organizing structures” and tumoroids represent a special form of cancer organoids. [22] Organoids represent in vitro tissues that are derived from human stem cells, organ-specific progenitor cells, or even disassociated tumor tissues, that are cultured in special ECM-based media with relatively high success rates. Tumoroids reflect the primary tissue both architecturally as well as functionally and maintain the histopathological features, genetic profile, mutational landscape, and even responses to therapy. [23] The utilization of tumoroids is growing, and their value for basic research and the initial phases of drug development has been realized. [24] The antitumor efficacy of cisplatin was discovered to be significantly lower in PDOs prepared from NSCLC tissues compared to cell lines, which exemplified how patient-derived material can provide valuable information about possible resistance mechanisms.[25] Regarding gastrointestinal malignancies, several studies have utilized PDOs as tools to assess drugs and probe into likely therapeutic pathways.[26,27] Such models have successfully reflected the utility of tumoroids in the correct reproduction of KRAS-mutant metastatic rectal cancer with microsatellite stability following hepatic resection and treatment with neoadjuvant combination chemotherapies in colorectal cancer,[28] as well as assessed drug responses in HCC [29,30] and also model treatment resistance patterns observed in esophageal squamous cell carcinoma. [31]

Figure 1: Tumoroids model in drug repurposing. a Schematic showing the generation of patient-derived organoids (PDOs) from a cancer biopsy: enzymatic digestion, embedding in extracellular matrix, addition of growth medium and cancer tumoroids enrichment by media compound withdrawal and/or addition of mutation related inhibitors. b, c the tumoroid model is used to screen drug repurposing candidates, resulting in the identification of drugs for preclinical and clinical testing.

Computational approaches

Computational methodology has emerged as a powerful tool in drug repurposing. [32,33] With increased omics technologies along with breakthroughs in big data analytics, machine learning, and computational algorithms, our understanding of the mechanisms and modes of action within oncology has deepened considerably. These computational techniques give wide access to disease-centric as well as drug-centric data. [34,35] Multiple computer-assisted drug repurposing strategies such as molecular docking, network analysis, data mining, similarity analysis, machine learning, and transcriptional signature techniques, are at the doorstep of the researchers. [36,37] By these computational approaches, we can investigate the anticancer prospect of drug repurposing further and provide disease-related data for the repurposing of drugs. [38,39] The identification of oncogenic pathway inhibitor activity through computer-aided drug repurposing approaches also represents a robust method. [40,41] These repositories not only amplify the therapeutic potential of repurposed drugs across various diseases, [42,43] but also strengthen chemotherapeutic strategies providing novel strategies to reduce the development of resistance and tailor treatments for maximizing patient-specific outcomes. [44,45]

3. Classes of Repurposed Drugs in Cancer

Table1: Repurposed drugs for cancer treatment with their new indication, old and new targets and development status

Pharmacological Class and Drug name

New Therapeutic Indication

New Target

Original Target

Development Status

References

Anti-Platelet

Aspirin

Gastric, esophageal, colorectal, pancreatic, ovarian, endometrial, breast, and prostate cancers

P1K3CA, Mtorc1 and AMPK

COXs

Phase II (NCT00468910) and III (NCT02301236) clinical trails, meta-analysis

[46-54]

Anti-Diabetic

Metformin

(Biguanides)

Colorectal, breast, pancreatic, prostate, lung and cervical malignancies

Cell cycle/Pstat3, S6 kinase, and Mtor/AMPK/

Mitochondrial respiration

Phase II (NCT05929495) and III (NCT03685409)

[55-63, 64-66, 67-76]

Pioglitazone (TZDs)

Breast, prostate, and colon cancer

PPARy

PPARy

Phase II trails (NCT00099021)

[77-83]

 

Desmopressin

Colon cancer

COX-2 and CD1

AVPR2

Preclinical

[84,85-87]

Anti-Helminthic

Flubendazole (benzimidazole)

 

 

Neuroblastoma, multiple myeloma, leukemia, lung, liver, colorectal, and breast cancer

Apoptosis (caspase 3 and 7)

Tubulin polymerization

Preclinical

[88-92]

Parbendazole

Pancreatic cancer

Apoptosis, cell cycle, and DNA damage

Tubulin polymerization

Preclinical

[93]

Mebendazole (MZ)

Glioblastoma, melanoma, prostate, breast, brain, ovarian, colon, lung, colorectal and endocrine cancers

Cell cycle, apoptosis (caspase-3 pathway), ABL and BRAF

Tubulin polymerization

preclinical

[94-96, 97-100,101,102]

Niclosamide

Colon, prostate, liver, ovarian and breast cancers

Wnt/ beta-catenim, NF-KB, Mtor and JAK/STAT3 pathways

Uncoupling of oxidative phosphorylation

Preclinical

[103,104 105,106-108]

Clioquinol

Leukemia and maliganant myeloma

HDAC

DNA replication

Preclinical

[109,110]

Ritonavir

Ovarian, pancreatic, and breast cancer, lymohocytic leukemia

Apoptosis

Protease inhibitors target HIV

Preclinical

[111-113]

Anti-viral

Ribavirin

Acute myeloid leukemia (AML)

Induces VEGF mRNA translation

RNA replicating

Phase II clinical trial (NCT00559091)

[114]

Cidofovir

Glioblastomas

Apoptosis

Viral DNA polymerase

Preclinical

[114]

Angiotensin Receptor Blocker

Losartan

Pancreatic cancer

Depleting the matrix and reducing collagen I levels

Angiotensin receptor

Phase II clinical trails (NCT01821729)

[115,116,117,118]

Candesartan

Colon cancer, prostate cancer, liver and kidney cancer

VEGF expression

Angiotensin receptor

Preclinical

[117,119,120,121,122,123]

Irbesartan

Colon cancer, liver and kidney cancer

AP-DNA binding, pErbB3, and p38/ MAPK

Angiotensin receptor

Preclinical

[115,116,117,119,120,123]

Telmisartan

Colon cancer, liver and kidney cancer

pErbB3, p38/MAPK caspase-3, Bcl-2, PI3/AKT pathway

Angiotensin receptor

Preclinical

[115,116,117,123,124]

ACE Inhibitor

Captopril

Colorectal liver metastases, prostate cancer, liver and kidney cancer

P53 expression

ACE

Preclinical

[115,116,117, 119,120,121,122,123,124]

Enalapril

Colorectal cancer (CRC)

IGF-IR 1

ACE

Preclinical

[117, 119,120]

Beta-Blockers

Propanolol

Ovarian, colorectal, lung, prostate, breast cancer, multiple myeloma, pancreatic, neuroblastoma, angiosarcoma, and leukemia

p-AKT/p-ERK/p-MEK and CD8+ T cells JNK signaling pathway and ROS.

Beta receptors

Phase I trails (NCT03633747) Phase II trails (NCT02596867)

[125,126-132,133,134]

Direct Vasodilator

Minoxidil

Ovarian cancer

Caspase-3

ATP- sensitive potassium channels

Phase II trials (NCT05272462)

[135-137]

Hydralazine

Prostate cancer

Induces demethylation, re-expressing suppressed genes

Direct vasodilator

Preclinical

[121,122]

Tezosentan

Various cancer types, especially with high expression of endothelin receptor type A

Endothelin receptor A

Endothelin receptor A/B

Preclinical

[138,139]

Cardiovascular Antihyperlipidemic

Fenofibrate

Breast cancer, lung cancer

AMPK, NF-KB, and ERK signaling

PPARa

Preclinical

[140,141]

Potassium K+ Channel Inhibitors

Glipalamide

Melanoma, lung, stomach, and breast cancers

Kv10.1, Kv10.2 (EAG2), and Kv11.1 channels

K channel (SUR)

Preclinical

[142,143]

Verapamil

Neuroblastoma and prostate cancer

K and Ca channels

T- and L- type Ca2+ channel antagonist

Preclinical

[142,143]

Astemizole

Various cancer cell lines

Kv10.1

H1- antagonist

Preclinical

[142,143]

Calcium (Cav) Channel Blockers

Mebefradil

High-grade glioma tumors

T- type Ca2+ channel

T and L-type Ca2+ channel

Phase I trails (NCT01480050)

[144,145]

Nifedipine

Colon cancer

PDL-1

Calcium channel

Preclinical

[117, 119,120]

Antibiotic

Bedaquiline

Breast

Mitochondrial ATP-synthase

ATP synthase

Preclinical

[146-148]

Doxycycine (tetracycline)

Various cancer cell lines

AMPK-mediated Mtor, WNT/b-catenin, and PI3K/AKT

30S ribosomal subunit

Preclinical

[111,149,150,151-154,155-157]

Clofoctol

Various cancer cell lines

UPR pathway

Bacterial protein synthesis

Preclinical

[158,159]

Doxorubicin

(Anthracyclines)

Breast cancer

DNA intercalator

DNA intercalator

Approved

[160-162]

Minocycline (Tetracycline)

Ovarian, breast, cancer, glioblastoma

Cell cycle arrest, cyclins A, B and E

Inhibit the 30S ribosomal subunit

Phase II trails (NCT01580969)

[163]

Tigecycline

(tetracycline)

Gliomas, myeloid leukemia, non-small cell lung cancer

Cell cycle arrest

Inhibit the 30s ribosomal subunit

Phase I trails (NCT01332786)

[149,150,164,165,166,167]

Ciprofloxacin (Fluoroquinolones)

Leukemia, osteoblastoma, osteosarcoma, colon, bladder and prostate cancers

mRNA production

Inhibit bacterial gyrase

Preclinical

[168,169]

Anti-Malarial

Chloroquine

Glioblastoma

Autophhagy

Inhibits heme polymerase

Preclinical

[94,95,170-172]

Artesunate

Leukemia, Kaposi’s sarcoma

ROS production and apoptosis

Free radicals’ generation

Preclinical

[170]

Mefloquine

Breast, leukemia, gastric, cervical, and colon cancers

P-gp expression, production of ROS

Inhibits 80S ribosome

Preclinical

[170-172]

Antipsychotic

Haloperidol

Pancreatic cancer

DRD2

DRD2

Preclinical

[173-175]

Penfluridol

Pancreatic cancer

DRD2, autophagy, JAK2-STAT3 and ERK/AKT signaling pathways

DRD2

Preclinical

[173-175]

Nonsteroidal Anti-Inflammatory Drug (NSAID)

Diclofenac

Pancreatic cancer

Wnt/Beta-catenin signaling pathway

COX5

Preclinical

[176,177,178]

Celecoxib (selective COX-2 inhibitor)

Breast cancer

Wnt/Beta-catenin signaling pathway

COX-2

Phase II trials (NCT01695226)

[164,165]

Disease-Modifying Antirheumatic drug (DMARD)

Auranofin

Various cancer types

TrxR, UPS system

Redox enzymes

Phase I (NCT01737502) and Phase II (NCT01419691) trails

[179-181]

Anti-Epileptic

Oxcarbazepine

Various cancer types

Cell cycle arrest, HDAC, P13K-Akt-mTOR pathway

Na channel inhibitor

Preclinical

[182,183]

Lacosamide

Glioblastoma

CRMP2

Na channel

Preclinical

[184-189]

Lamotrigine

Brain tumors

N-, L-, and P-type Ca channels, 5-HT3 receptors

Na+ channels

Preclinical

[188,189]

Anesthetic Medications

Ketamine

Lung cancer, ovarian cancer, breast cancer, hepatocellular carcinomas

CD69, P57, glutathione peroxidase 4

NMDA receptor

Preclinical

[85]

Propofol

Squamous cell carcinoma

Caspase and MAPK pathways

GABA receptors

Preclinical

[190,191]

4. Rationale for Drug Repurposing in Oncology

Cancer is a biologically complex and heterogeneous disorder that comprises several genetic, epigenetic, and metabolic changes, and it is often challenging to treat using single-target anticancer therapies. Also, despite recent advances in the field of oncology, a significant proportion of cancer patients have a poor prognosis because of the late stage of cancer diagnosis, development of resistance to cancer therapies, toxicological effects of available anticancer medicines, and higher costs associated with cancer therapies. The above-stated challenges associated with cancer therapies have established the need for alternative and complementary therapies. Repurposing of medicines provides a reasonable approach by which novel anticancer therapies can be identified using already approved or investigational medicines. One of the main drivers facilitating the repurposing of drugs for cancer therapy would be polypharmacology, which pertains to the interference of a single compound in several target molecules involved in the pathogenesis of cancer. Many drugs used in non-cancer therapy tend to be pleiotropic; these drugs affect biological processes such as cell proliferation, apoptosis, angiogenesis, inflammation, immunomodulation, and metabolism. The pleiotropy associated with these non-cancer drugs can be beneficial in cancer therapy because it would be possible to target several pathological pathways simultaneously. There are a number of examples that have proven that drug repurposing is a feasible area to target for effective treatment of cancer. For instance, thalidomide, which acts as a sedative, has been repurposed as a treatment for multiple myeloma owing to its antiangiogenic and immunomodulatory action. Another example is metformin, an antidiabetic drug, which has been proven to act as an anticancer drug owing to its ability to target cancer cell metabolism and impede growth. [192] Repurposing of drugs is equally important within the context of the treatment of rare cancers and drug-resistant cancers, in which the development of drugs faces the constraint of the smaller number of patients as well as the associated high research costs. Repurposing of drugs acts as an affordable and accessible treatment approach having an established safety profile. Repurposing drugs in the case of drug-resistant cancers can either function alone or along with standard treatment approaches in eliminating the drug-resistance mechanism. Hence, repurposing of drugs is an innovative approach in the treatment of cancers. [193,194]

5. Mechanisms of Action Underlying Repurposed Drugs

Repurposed drugs demonstrate anticancer properties by modulating various hallmark pathways of cancer biology. Another mechanism of repurposed drugs is the use of aberrant metabolism in cancer cells. Tumors exhibit a high reliance on aerobic glycolysis, glutamine metabolism, and lipogenesis for supporting high cell division rates. Repurposed drugs like metformin and statins work by interfering with these high dependencies of tumors. Another mechanism used by repurposed drugs is the inhibition of angiogenesis. Angiogenesis is a highly essential mechanism for the development of tumors. Repurposed drugs like thalidomide and propranolol work by interfering with the signaling of vascular endothelial growth factor (VEGF) and the proliferation of endothelial cells. This results in the reduction of tumor vasculature and the deprivation of nutrients. [195] In addition to metabolic and vascular properties, repurposed drugs also demonstrate properties in cell survival, immunity, as well as genomic stability. Most of these drugs cause apoptosis or autophagy via the activation of intrinsic cell death pathways, induction of oxidative stress, or inhibition of pro-survival signaling pathways PI3K/Akt/mTOR. For instance, antipsychotic and antimalarial drugs can cause mitochondrial dysfunction-mediated autophagic cell death. Moreover, some repurposed drugs demonstrate immunomodulatory properties by upregulating antitumor immunity through the attenuation of immunosuppression or activation of immune effector cells. Some repurposed drugs also affect DNA repair pathways by making cancer cells hypersensitive to DNA damage or chemotherapeutic drugs. This occurs in antiparasitic/antibiotic drugs. Lastly, epigenetic modulation stands as an important principle. This takes place when drugs cause changes in DNA methylation status as well as histone acetylation status, resulting in the reactivation of tumor suppressor genes and downregulation of oncogene expression. [196,197]

6. Challenges of Drug Repurposing

Whereas systematic drug repurposing has opened new avenues, few of the repurposed drugs in cancer or indeed in oncology have ultimately entered clinical practice so far. Although the drug repurposing process is considered to be much faster and cheaper compared with classical drug development, prematurely entering clinical trials may actually delay the detection of more specific therapies. In addition, as is true for all drug development, late-stage clinical trial failure can still occur. Other challenges include legal and regulatory barriers and pharmacological/dosing issues. [198,199] We would hope that these might be surmounted to realize fully the potential of drug repurposing. Pharmacological challenges with high effective concentrations may not be clinically achievable. While the idea of drug repurposing is certainly in its promising stages, there are a variety of pharmacological concerns. Drugs targeted against specific receptors, cells, or organs may not prove as effective when utilized for different disease indications. As such, higher doses or increased drug interactions may be required to achieve therapeutic levels, which may then introduce new mechanisms of action unrelated to their indicated use. [200]

FUTURE DIRECTIONS

The future trends in repurposing drugs for cancer treatment are being increasingly determined by the incorporation of artificial intelligence (AI) technology into big-data platforms, which allow for quick screening of drugs based on large genome, transcriptome, and clinical data. Such technology will be able to provide new target relationships for drugs, predict the efficacy of drugs, and reveal new patterns in real-world data in an efficient manner without increasing the cost associated with discovering new drugs. Use of AI modeling with electronic health records will improve the efficacy of repurposing in cancer treatment. A further significant area of research encompasses the combination of repurposed drugs with conventional therapies such as chemotherapy, targeted therapies, immunotherapy, and radiation. A combination of various therapies can improve therapeutic efficacy and sensitivity to cancers caused by resistance to existing therapies and decrease toxicity levels of existing drugs by taking them in lower concentrations. Meanwhile, personalized medicine and biomarker-assisted repurposing have been increasingly emphasized, wherein the molecular profiles of patients are taken into consideration for deciding the repurposing of appropriate drugs for the patient based on their molecular profiles. It is also expected that collaborative efforts in the form of consortia of drug repurposing and public/private collaborations would increase. This would help in collaborative work in the area of data sharing, resource integration, and expertise. Also, the development of better and adaptive regulatory infrastructure specific to the area of repurposed drugs would be essential. This would help in quicker approvals, clarity in terms of intellectual properties, and incentivation of clinical trials. Thus, the area of drug repurposing would emerge as a sustainable, innovative, and patient-focused area in the future of cancer therapy. [201-204]

CONCLUSION

In conclusion, repurposing of drugs appears to be a very useful approach for tackling the ever-ongoing issues connected with cancer therapy by providing a means for efficiently lowering cancer treatment costs, overcoming the problem of resistance, cytotoxicity, and helping in the treatment of aggressive or rare types of cancers with very limited therapeutic alternatives. This present review describes the effectiveness of repurposed drugs with the ability to combat several “hallmarks of cancer” including their aberrant metabolism, angiogenic potential, evasive immunity, instability in the genome, and mutated cell survival pathways by using the pleiotropic effects of repurposed drugs with the advantage of well-recognized safety profiles. Advances in patient-derived in vitro organoids and computer-aided methodologies using artificial intelligence tools greatly improved the chances of rediscovering repurposed antitumor drugs for future therapy. Despite the presence of pharmacological barriers, dealing with the problem using joint collaborative research and improved biotechnological strategies for a better understanding would greatly improve the speedy translation of repurposed antitumor drugs at the clinical trial phase for better future outcomes in cancer treatment.                                          

REFERENCE

  1. Piña-Sánchez P., Chávez-González A., Ruiz-Tachiquín M., Vadillo E., Monroy-García A.,             Montesinos J.J., Grajales R., de la Barrera M.G., Mayani H. Cancer biology, epidemiology, and   treatment in the 21st century: Current status and future challenges from a biomedical perspective. Cancer Control. 2021; 28:10732748211038735. doi: 10.1177/10732748211038735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Kasar GN, Rasal PB, Jagtap MN, Surana KR, Mahajan SK, Sonawane DD, Ahire ED. CAR T-cell structure, manufacturing, applications, and challenges in the management of community acquired diseases and disorders. Community Acquir Infect. 2025;12. doi:10.54844/cai.2024.0780
  3. Cooper G.M., Hausman R.E. The development and causes of cancer. Cell A Mol. Approach. 2000; 2:725–766. [Google Scholar]
  4. Correia A.S., Gärtner F., Vale N. Drug combination and repurposing for cancer therapy: The example of breast cancer. Heliyon. 2021;7: e05948. doi: 10.1016/j.heliyon. 2021.e05948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown J.S., Amend S.R., Austin R.H., Gatenby R.A., Hammarlund E.U., Pienta K.J. Updating the definition of cancer. Mol. Cancer Res. 2023; 21:1142–1147. doi: 10.1158/1541-7786.MCR-23-0411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goodman E.N. What is the Environment Doing to Our Genes? A Pedigree Analysis of the Possible Genetic Basis of a Set of Familial Clinical Disorders. Encompass; Tonbridge, UK: 2022. [Google Scholar]
  7. Ramalingam S., editor. Cancer Genes. Bentham Science Publishers; Sharjah, United Arab Emirates: 2023. [Google Scholar]
  8. Khan M., Pelengaris S., editors. The Molecular Biology of Cancer: A Bridge from Bench to Bedside. John Wiley & Sons; Hoboken, NJ, USA: 2013. [(accessed on 16 November 2024)]. Available online: https://library.iau.edu.sa/scholarly-journals/molecular-biology-cancer-bridge-bench-bedside-2nd/docview/1349242751/se-2. [Google Scholar]
  9. Hejmadi M. Introduction to Cancer Biology. Bookboon; London, UK: 2014. [Google Scholar]
  10. Pantziarka, P., Verbaanderd, C., Huys, I., Bouche, G. & Meheus, L. Repurposing drugs in oncology: from candidate selection to clinical adoption. Semin. Cancer Biol. 68, 186–191 (2021).
  11. Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. & Prunotto, M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug Discov. 16, 531–543 (2017).
  12. Shim, J. S. & Liu, J. O. Recent advances in drug repositioning for the discovery of new anticancer drugs. Int. J. Biol. Sci. 10, 654–663 (2014).
  13. Pillaiyar, T., Meenakshi Sundaram, S., Manickam, M. & Sankaranarayanan, M. A medicinal chemistry perspective of drug repositioning: recent advances and challenges in drug discovery. Eur. J. Med. Chem. 195, 112275 (2020).
  14. Moffat, J. G., Rudolph, J. & Bailey, D. Phenotypic screening in cancer drug discovery - past, present and future. Nat. Rev. Drug Discov. 13, 588–602 (2014).
  15. Rabben, H. L. et al. Computational drug repositioning and experimental validation of ivermectin in treatment of gastric cancer. Front. Pharmacol. 12, 625991 (2021).
  16. Parvathaneni, V., Kulkarni, N. S., Muth, A. & Gupta, V. Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov. Today 24, 2076–2085 (2019).
  17. Tanoli, Z. et al. Exploration of databases and methods supporting drug repurposing: a comprehensive survey. Brief. Bioinform. 22, 1656–1678 (2021).
  18. Huang, H., Zhang, P., Qu, X. A., Sanseau, P. & Yang, L. Systematic prediction of drug combinations based on clinical side-effects. Sci. Rep. 4, 7160 (2014).
  19. Kuhn, M., Campillos, M., Letunic, I., Jensen, L. J. & Bork, P. A side effect resource to capture phenotypic effects of drugs. Mol. Syst. Biol. 6, 343 (2010).
  20. Celebi, R., Bear Don’t Walk, O. 4th, Movva, R., Alpsoy, S. & Dumontier, M. In-silico prediction of synergistic anti-cancer drug combinations using Multi-omics Data. Sci. Rep. 9, 8949 (2019).
  21. Pallavi Aher, Janhavi Gangurde, Gaurav Kasar*, Durgesh Pagar, Dipti Chavan, Dr. Chandrashekhar Patil, Dr. Sunil Mahajan, Combating Antibiotic Resistance: Pharmacological Strategies and Emerging Therapeutic Innovations, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 5, 4247-4263. https://doi.org/10.5281/zenodo.15512619
  22. Kasar G, Rasal P, Mahajan M, Upaganlawar A, Upasani C. Effect of Lycopene alone and along with Coenzyme-Q10 in Streptozotocin Induced Peripheral Neuropathy: Biochemical & Behavioural Study. Natural Resources for Human Health. 2023;3(3):323–30. https://doi.org/10.53365/nrfhh/163104
  23. Xu, H., Jiao, D., Liu, A. & Wu, K. Tumor organoids: applications in cancer modeling and potentials in precision medicine. J. Hematol. Oncol. 15, 58 (2022).
  24. Kim, M. et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat. Commun. 10, 3991 (2019).
  25. Zhang, Z. et al. Establishment of patient-derived tumor spheroids for non-small cell lung cancer. PLoS One 13, e0194016 (2018).
  26. Kasagi, Y. et al. The esophageal organoid system reveals functional interplay between notch and cytokines in reactive epithelial changes. Cell Mol. Gastroenterol. Hepatol. 5, 333–352 (2018).
  27. Nanki, K. et al. Divergent routes toward Wnt and R-spondin niche independency during human gastric carcinogenesis. Cell 174, 856–869.e17 (2018).
  28. Kryeziu, K. et al. Increased sensitivity to SMAC mimetic LCL161 identified by longitudinal ex vivo pharmacogenomics of recurrent, KRAS mutated rectal cancer liver metastases. J. Transl. Med. 19, 384 (2021).
  29. Cao, W. et al. Modeling liver cancer and therapy responsiveness using organoids derived from primary mouse liver tumors. Carcinogenesis 40, 145–154 (2019).
  30. Nuciforo, S. et al. Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep. 24, 1363–1376 (2018).
  31. Uemura, N. et al. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med. 345, 784–789 (2001).
  32. Vanhaelen, Q. et al. Design of efficient computational workflows for in silico drug repurposing. Drug Discov. Today 22, 210–222 (2017).
  33. Masoudi-Sobhanzadeh, Y., Omidi, Y., Amanlou, M. & Masoudi-Nejad, A. Drug databases and their contributions to drug repurposing. Genomics 112, 1087–1095 (2020).
  34. Mottini, C., Napolitano, F., Li, Z., Gao, X. & Cardone, L. Computer-aided drug repurposing for cancer therapy: approaches and opportunities to challenge anticancer targets. Semin. Cancer Biol. 68, 59–74 (2021).
  35. Issa, N. T., Stathias, V., Schürer, S. & Dakshanamurthy, S. Machine and deep learning approaches for cancer drug repurposing. Semin. Cancer Biol. 68, 132–142 (2021).
  36. Lotfi Shahreza, M., Ghadiri, N., Mousavi, S. R., Varshosaz, J. & Green, J. R. A review of network-based approaches to drug repositioning. Brief. Bioinform. 19, 878–892 (2018).
  37. Jarada, T. N., Rokne, J. G. & Alhajj, R. A review of computational drug repositioning: strategies, approaches, opportunities, challenges, and directions. J. Cheminform. 12, 46 (2020).
  38. Montalvo-Casimiro, M. et al. Epidrug repurposing: discovering new faces of old acquaintances in cancer therapy. Front. Oncol. 10, 605386 (2020).
  39. Serafin, M. B. et al. Drug repositioning in oncology. Am. J. Ther. 28, e111–e117 (2021).
  40. Hurle, M. R. et al. Computational drug repositioning: from data to therapeutics. Clin. Pharmacol. Ther. 93, 335–341 (2013).
  41. Khaladkar, M. et al. Uncovering novel repositioning opportunities using the Open Targets platform. Drug Discov. Today 22, 1800–1807 (2017).
  42. Pushpakom, S. et al. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov. 18, 41–58 (2019).
  43. Adasme, M. F., Parisi, D., Sveshnikova, A. & Schroeder, M. Structure-based drug repositioning: potential and limits. Semin. Cancer Biol. 68, 192–198 (2021).
  44. Würth, R. et al. Drug-repositioning opportunities for cancer therapy: novel molecular targets for known compounds. Drug Discov. Today 21, 190–199 (2016).
  45. Jin, G. & Wong, S. T. C. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov. Today 19, 637–644 (2014).
  46. Rodrigues, R.; Duarte, D.; Vale, N. Drug repurposing in cancer therapy: Influence of patient’s genetic background in breast cancer treatment. Int. J. Mol. Sci. 2022, 23, 4280. [CrossRef]
  47. Aggarwal, S.; Verma, S.S.; Aggarwal, S.; Gupta, S.C. Drug repurposing for breast cancer therapy: Old weapon for new battle. Semin. Cancer Biol. 2021, 68, 8–20. [CrossRef]
  48. Elwood, P.; Morgan, G.; Watkins, J.; Protty, M.; Mason, M.; Adams, R.; Dolwani, S.; Pickering, J.; Delon, C.; Longley, M. Aspirin and cancer treatment: Systematic reviews and meta-analyses of evidence: For and against. Br. J. Cancer 2024, 130, 3–8. [CrossRef]
  49. Zhang, X.; Du, R.; Luo, N.; Xiang, R.; Shen, W. Aspirin mediates histone methylation that inhibits inflammation-related stemness gene expression to diminish cancer stemness via COX-independent manner. Stem Cell Res. Ther. 2020, 11, 1–15. [CrossRef]
  50. Guo,Y.; Liu, Y.; Zhang, C.; Su, Z.-Y.; Li, W.; Huang, M.-T.; Kong, A.-N.T. The epigenetic effects of aspirin: The modification of histone H3 lysine 27 acetylation in the prevention of colon carcinogenesis in azoxymethane-and dextran sulfate sodium-treated CF-1 mice. Carcinogenesis 2016, 37, 616–624. [CrossRef]
  51. Elwood, P.; Protty, M.; Morgan, G.; Pickering, J.; Delon, C.; Watkins, J. Aspirin and cancer: Biological mechanisms and clinical outcomes. Open Biol. 2022, 12, 220124. [CrossRef] [PubMed]
  52. Motta, R.; Cabezas-Camarero, S.; Torres-Mattos, C.; Riquelme, A.; Calle, A.; Figueroa, A.; Sotelo, M.J. Immunotherapy in microsatellite instability metastatic colorectal cancer: Current status and future perspectives. J. Clin. Transl. Res. 2021, 7, 511. [PubMed] [PubMed Central]
  53. Nounu, A.; Greenhough, A.; Heesom, K.J.; Richmond, R.C.; Zheng, J.; Weinstein, S.J.; Albanes, D.; Baron, J.A.; Hopper, J.L.; Figueiredo, J.C.; et al. A combined proteomics and Mendelianrand omization approach to investigate the effects of aspirin-targeted proteins on colorectal cancer. Cancer Epidemiol. Biomark. Prev. 2021, 30, 564–575. [CrossRef] [PubMed]
  54. Malik, J.A.; Ahmed, S.; Jan, B.; Bender, O.; Al Hagbani, T.; Alqarni, A.; Anwar, S. Drugs repurposed: An advanced step towards the treatment of breast cancer and associated challenges. Biomed. Pharmacother. 2022, 145, 112375. [CrossRef]
  55. Lord, S.R.; Harris, A.L. Is it still worth pursuing the repurposing of metformin as a cancer therapeutic? Br. J. Cancer 2023, 128, 958–966. [CrossRef]
  56. Jourdan, J.-P.; Bureau, R.; Rochais, C.; Dallemagne, P. Drug repositioning: A brief overview. J. Pharm. Pharmacol. 2020, 72, 1145–1151. [CrossRef]
  57. Siddiqui, S.; Deshmukh, A.J.; Mudaliar, P.; Nalawade, A.J.; Iyer, D.; Aich, J. Drug repurposing: Re-inventing therapies for cancer without re-entering the development pipeline—A review. J. Egypt. Natl. Cancer Inst. 2022, 34, 33. [CrossRef]
  58. Zhu,L.; Yang, K.; Ren, Z.; Yin, D.; Zhou, Y. Metformin as anticancer agent and adjuvant in cancer combination therapy: Current progress and future prospect. Transl. Oncol. Vol. 2024, 44, 101945. [CrossRef]
  59. LaMoia, T.E.; Shulman, G.I. Cellular and molecular mechanisms of metformin action. Endocr. Rev. 2021, 42, 77–96. [CrossRef]
  60. Bose, S.; Zhang, C.; Le, A. Glucose metabolism in cancer: The Warburg effect and beyond. Adv. Exp. Med. Biol. 2021, 1311, 3–15. Available online: http://www.springer.com/series/5584 (accessed on 16 November 2024).
  61. Kasar GN, Rasal PB, Upaganlawar AB, Pagar DS, Surana KR, Mahajan SK, Sonawane DD. Navigating dysbiosis: Insights into gut microbiota disruption and health outcomes, Community Acquir Infect. 2025;12. doi:10.54844/cai.2024.0778.
  62. Sonawane D A, Mahajan SK, Patil C, Pagar D, Kasar G, Exploring the Role of Natural Agents in the Management of Diabetic-Induced Neuropathy, Asian Journal of Pharmaceutical Research and Development. 2025; 13(5):89-96, DOI: http://dx.doi.org/10.22270/ajprd.v13i5.1633
  63. Kiran Aher, Nandini Bagul, Manjusha Chavan, Gaurav Kasar*, Dipti Chavan, Dr. Chandrashekhar Patil, Dr. Sunil Mahajan, Advances in Blood Cancer: Pathophysiology, Diagnosis and Emerging Therapeutic Strategies, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 5, 4218-4228. https://doi.org/10.5281/zenodo.15512403
  64. Rasal, P. B.., Kasar, G. N., Mahajan, M. S., Upaganlawar, A. B., & Upasani, C. D. (2023). Ameliorative effect of lycopene alone and in combination with coenzyme Q10 in streptozotocin-induced diabetic nephropathy in experimental rats. International Journal of Plant Based Pharmaceuticals, 3(1), 123-130, https://doi.org/10.29228/ijpbp.24.
  65. Surana, K. R., Kasar, G. N., & Mahajan, S. K. (Eds.). (2025). Computational Drug Design and Development: Artificial Intelligence, Molecular Modeling, and Structure-Based Discovery. Deep Science Publishing. https://doi.org/10.70593/978-93-7185-021-6
  66. Brown, J.R.; Chan, D.K.; Shank, J.J.; Griffith, K.A.; Fan, H.; Szulawski, R.; Yang, K.; Reynolds, R.K.; Johnston, C.; McLean, K.; et al. Phase II clinical trial of metformin as a cancer stem cell–targeting agent in ovarian cancer. JCI Insight 2020, 5, e133247. [CrossRef]
  67. Arend, R.C.; Londoño-Joshi, A.I.; Gangrade, A.; Katre, A.A.; Kurpad, C.; Li, Y.; Samant, R.S.; Li, P.-K.; Landen, C.N.; Yang, E.S.; et al. Niclosamide and its analogs are potent inhibitors of Wnt/β-catenin, mTOR and STAT3 signaling in ovarian cancer. Oncotarget 2016, 7, 86803. [CrossRef]
  68. Wang, J.; Ren, X.-R.; Piao, H.; Zhao, S.; Osada, T.; Premont, R.T.; Mook, R.A.; Morse, M.A.; Lyerly, H.K.; Chen, W. Niclosamide induced Wnt signaling inhibition in colorectal cancer is mediated by autophagy. Biochem. J. 2019, 476, 535–546. [CrossRef]
  69. Hamilton, G.; Rath, B. Repurposing of anthelminthics as anticancer drugs. Oncomedicine 2018, 3, 1–8. [CrossRef]
  70. Mussin, N.; Oh, S.C.; Lee, K.-W.; Park, M.Y.; Seo, S.; Yi, N.-J.; Kim, H.; Yoon, K.C.; Ahn, S.-W.; Kim, H.-S.; et al. Sirolimus and metformin synergistically inhibits colon cancer in vitro and in vivo. J. Korean Med. Sci. 2017, 32, 1385–1395. [CrossRef]
  71. Sanchez-Plumed, J.A.; Molina, M.G.; Alonso, A.; Arias, M. Sirolimus, the first mTOR inhibitor. Nefrología 2006, 26, 21–32
  72. Granata, S.; Mercuri, S.; Troise, D.; Gesualdo, L.; Stallone, G.; Zaza, G. mTOR-inhibitors and post-transplant diabetes mellitus: A link still debated in kidney transplantation. Front. Med. 2023, 10, 1168967. [CrossRef]
  73. Kalyanaraman, B.; Cheng, G.; Hardy, M.; Ouari, O.; Sikora, A.; Zielonka, J.; Dwinell, M.B. Modified metformin as a more potent anticancer drug: Mitochondrial inhibition, redox signaling, antiproliferative effects and future EPR studies. Cell Biochem. Biophys. 2017, 75, 311–317. [CrossRef] [PubMed]
  74. Cheng, G.; Zielonka, J.; Ouari, O.; Lopez, M.; McAllister, D.; Boyle, K.; Barrios, C.S.; Weber, J.J.; Johnson, B.D.; Hardy, M.; et al. Mitochondria-targeted analogues of metformin exhibit enhanced antiproliferative and radio sensitizing effects in pancreatic cancer cells. Cancer Res. 2016, 76, 3904–3915. [CrossRef]
  75. Amengual-Cladera, E.; Morla-Barcelo, P.M.; Morán-Costoya, A.; Sastre-Serra, J.; Pons, D.G.; Valle, A.; Roca, P.; Nadal-Serrano, M. Metformin: From Diabetes to Cancer—Unveiling Molecular Mechanisms and Therapeutic Strategies. Biology 2024, 13, 302. [CrossRef] [PubMed]
  76. Raafat, S.N.; El Wahed, S.A.; Badawi, N.M.; Saber, M.M.; Abdollah, M.R. Enhancing the anticancer potential of metformin: Fabrication of efficient nanospanlastics, in vitro cytotoxic studies on HEP-2 cells and reactome enhanced pathway analysis. Int. J. Pharm. X 2023, 6, 100215. [CrossRef]
  77. Kole, L.; Sarkar, M.; Deb, A.; Giri, B. Pioglitazone, an anti-diabetic drug requires sustained MAPK activation for its anti-tumor activity in MCF7 breast cancer cells, independent of PPAR-γ pathway. Pharmacol. Rep. 2016, 68, 144–154. [CrossRef]
  78. Chi, T.; Wang, M.; Wang, X.; Yang, K.; Xie, F.; Liao, Z.; Wei, P. PPAR-γ modulators as current and potential cancer treatments. Front. Oncol. 2021, 11, 737776. [CrossRef]
  79. Tan, Y.; Wang, M.; Yang, K.; Chi, T.; Liao, Z.; Wei, P. PPAR-α modulators as current and potential cancer treatments. Front. Oncol. 2021, 11, 599995. [CrossRef] [PubMed]
  80. Mirza, A.Z.; Althagafi, I.I.; Shamshad, H. Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications. Eur. J. Med. Chem. 2019, 166, 502–513. [CrossRef] [PubMed]
  81. Galal, M.A.; Al-Rimawi, M.; Hajeer, A.; Dahman, H.; Alouch, S.; Aljada, A. Metformin: A Dual-Role Player in Cancer Treatment and Prevention. Int. J. Mol. Sci. 2024, 25, 4083. [CrossRef] [PubMed]
  82. Hua, Y.; Zheng, Y.; Yao, Y.; Jia, R.; Ge, S.; Zhuang, A. Metformin and cancer hallmarks: Shedding new lights on therapeutic repurposing. J. Transl. Med. 2023, 21, 403. [CrossRef]
  83. Brown, J.R.; Chan, D.K.; Shank, J.J.; Griffith, K.A.; Fan, H.; Szulawski, R.; Yang, K.; Reynolds, R.K.; Johnston, C.; McLean, K.; et al. Phase II clinical trial of metformin as a cancer stem cell–targeting agent in ovarian cancer. JCI Insight 2020, 5, e133247. [CrossRef
  84. Schcolnik-Cabrera, A.; Juárez-López, D.; Duenas-Gonzalez, A. Perspectives on Drug Repurposing. Curr. Med. Chem. 2021, 28, 2085–2099. [CrossRef] [PubMed]
  85. Hijazi, M.A.; Gessner, A.; El-Najjar, N. Repurposing of chronically used drugs in cancer therapy: A chance to grasp. Cancers 2023, 15, 3199. [CrossRef]
  86. Kirtonia, A.; Gala, K.; Fernandes, S.G.; Pandya, G.; Pandey, A.K.; Sethi, G.; Khattar, E.; Garg, M. Repurposing of drugs: An attractive pharmacological strategy for cancer therapeutics. Semin. Cancer Biol. 2021, 68, 258–278. [CrossRef]
  87. D?abrowski, M. Diabetes, antidiabetic medications and cancer risk in type 2 diabetes: Focus on SGLT-2 inhibitors. Int. J. Mol. Sci. 2021, 22, 1680. [CrossRef]
  88. Younis, N.S.; Ghanim, A.M.H.; Saber, S. Mebendazole augments sensitivity to sorafenib by targeting MAPK and BCL-2 signalling in n-nitrosodiethylamine-induced murine hepatocellular carcinoma. Sci. Rep. 2019, 9, 19095. [CrossRef]
  89. Chen, H.; Weng, Z.; Xu, C. Albendazole suppresses cell proliferation and migration and induces apoptosis in human pancreatic cancer cells. Anticancer. Drugs 2020, 31, 431–439. [CrossRef]
  90. Lee, M.; Chen, Y.; Hsu, Y.; Lin, B. Niclosamide inhibits the cell proliferation and enhances the responsiveness of esophageal cancer cells to chemotherapeutic agents. Oncol. Rep. 2020, 43, 549–561. [CrossRef]
  91. Xing, X.; Zhou, Z.; Peng, H.; Cheng, S. Anticancer role of flubendazole: Effects and molecular mechanisms. Oncol. Lett. 2024, 28, 558. [CrossRef]
  92. Venugopal, S.; Kaur, B.; Verma, A.; Wadhwa, P.; Magan, M.; Hudda, S.; Kakoty, V. Recent advances of benzimidazole as anticancer agents. Chem. Biol. Drug Des. 2023, 102, 357–376. [CrossRef]
  93. 93.Hijazi, M.A.; Gessner, A.; El-Najjar, N. Repurposing of chronically used drugs in cancer therapy: A chance to grasp. Cancers 2023, 15, 3199. [CrossRef]
  94. Pantziarka, P.; Bouche, G.; Meheus, L.; Sukhatme, V.; Sukhatme, V.P. Repurposing Drugs in Oncology (ReDO)—Mebendazole as an anticancer agent. Ecancermedicalscience 2014, 8, 443. [CrossRef]
  95. Laudisi, F.; Marônek, M.; Di Grazia, A.; Monteleone, G.; Stolfi, C. Repositioning of anthelmintic drugs for the treatment of cancers of the digestive system. Int. J. Mol. Sci. 2020, 21, 4957. [CrossRef]
  96. Younis, N.S.; Ghanim, A.M.H.; Saber, S. Mebendazole augments sensitivity to sorafenib by targeting MAPK and BCL-2 signalling in n-nitrosodiethylamine-induced murine hepatocellular carcinoma. Sci. Rep. 2019, 9, 19095. [CrossRef]
  97. Mohi-Ud-Din, R.; Chawla, A.; Sharma, P.; Mir, P.A.; Potoo, F.H.; Reiner, Ž.; Reiner, I.; Ate¸s¸sahin, D.A.; Sharifi-Rad, J.; Mir, R.H.; et al. Repurposing approved non-oncology drugs for cancer therapy: A comprehensive review of mechanisms, efficacy, and clinical prospects. Eur. J. Med. Res. 2023, 28, 345. [CrossRef]
  98. Guerini, A.E.; Triggiani, L.; Maddalo, M.; Bonù, M.L.; Frassine, F.; Baiguini, A.; Alghisi, A.; Tomasini, D.; Borghetti, P.; Pasinetti, N.; et al. Mebendazole as a candidate for drug repurposing in oncology: An extensive review of current literature. Cancers 2019, 11, 1284. [CrossRef]
  99. Rushworth, L.K.; Hewit, K.; Munnings-Tomes, S.; Somani, S.; James, D.; Shanks, E.; Dufès, C.; Straube, A.; Patel, R.; Leung, H.Y. Repurposing screen identifies mebendazole as a clinical candidate to synergise with docetaxel for prostate cancer treatment. Br. J. Cancer 2020, 122, 517–527. [CrossRef]
  100. Zhang, Z.; Ji, J.; Liu, H. Drug repurposing in oncology: Current evidence and future direction. Curr. Med. Chem. 2021, 28, 2175–2194. [CrossRef]
  101. Pinto, L.C.; Mesquita, F.P.; Soares, B.M.; da Silva, E.L.; Puty, B.; de Oliveira, E.H.C.; Burbano, R.R.; Montenegro, R.C. Mebendazole induces apoptosis via C-MYC inactivation in malignant ascites cell line (AGP01). Toxicol. Vitr. 2019, 60, 305–312. [CrossRef] [PubMed]
  102. Chai, J.-Y.; Jung, B.-K.; Hong, S.-J. Albendazole and mebendazole as anti-parasitic and anticancer agents: An update. Korean J. Parasitol. 2021, 59, 189. [CrossRef] [PubMed] [PubMed Central]
  103. Lee, M.; Chen, Y.; Hsu, Y.; Lin, B. Niclosamide inhibits the cell proliferation and enhances the responsiveness of esophageal cancer cells to chemotherapeutic agents. Oncol. Rep. 2020, 43, 549–561. [CrossRef]
  104. Zhang, Z.; Zhou, L.; Xie, N.; Nice, E.C.; Zhang, T.; Cui, Y.; Huang, C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct. Target. Ther. 2020, 5, 113. [CrossRef]
  105. Lu, L.; Dong, J.; Wang, L.; Xia, Q.; Zhang, D.; Kim, H.; Yin, T.; Fan, S.; Shen, Q. Activation of STAT3 and Bcl-2 and reduction of reactive oxygen species (ROS) promote radioresistance in breast cancer and overcome of radioresistance with niclosamide. Oncogene 2018, 37, 5292–5304. [CrossRef]
  106. Arend, R.C.; Londoño-Joshi, A.I.; Gangrade, A.; Katre, A.A.; Kurpad, C.; Li, Y.; Samant, R.S.; Li, P.-K.; Landen, C.N.; Yang, E.S.; et al. Niclosamide and its analogs are potent inhibitors of Wnt/β-catenin, mTOR and STAT3 signaling in ovarian cancer. Oncotarget 2016, 7, 86803. [CrossRef]
  107. Wang, J.; Ren, X.-R.; Piao, H.; Zhao, S.; Osada, T.; Premont, R.T.; Mook, R.A.; Morse, M.A.; Lyerly, H.K.; Chen, W. Niclosamide induced Wnt signaling inhibition in colorectal cancer is mediated by autophagy. Biochem. J. 2019, 476, 535–546. [CrossRef]
  108. Hamilton, G.; Rath, B. Repurposing of anthelminthics as anticancer drugs. Oncomedicine 2018, 3, 1–8. [CrossRef]
  109. Cao, B.; Li, J.; Zhu, J.; Shen, M.; Han, K.; Zhang, Z.; Yu, Y.; Wang, Y.; Wu, D.; Chen, S.; et al. The antiparasitic clioquinol induces apoptosis in leukemia and myeloma cells by inhibiting histone deacetylase activity. J. Biol. Chem. 2013, 288, 34181–34189. [CrossRef]
  110. Cao,B.; Shen, M.; Wu, D.; Du, J.; Zhu, J.; Chen, S.; Sun, A.; Tang, X.; Xu, Z.; Kong, Y.; et al. The Proteasomal Inhibitor Clioquinol Induces Apoptosis in Leukemia and Myeloma Cells by Inhibiting Histone Deacetylase Activity. Blood 2012, 120, 2449. [CrossRef]
  111. Pfab, C.; Schnobrich, L.; Eldnasoury, S.; Gessner, A.; El-Najjar, N. Repurposing of antimicrobial agents for cancer therapy: What do weknow? Cancers 2021, 13, 3193. [CrossRef]
  112. Aldea, M.; Michot, J.-M.; Danlos, F.-X.; Ribas, A.; Soria, J.-C. Repurposing of anticancer drugs expands possibilities for antiviral and anti-inflammatory discovery in COVID-19. Cancer Discov. 2021, 11, 1336–1344. [CrossRef]
  113. Pal, D.; Song, I.-H.; Warkad, S.D.; Song, K.-S.; Yeom, G.S.; Saha, S.; Shinde, P.B.; Nimse, S.B. Indazole-based microtubule-targeting agents as potential candidates for anticancer drugs discovery. Bioorganic Chem. 2022, 122, 105735. [CrossRef]
  114. DeLellis, L.; Veschi, S.; Tinari, N.; Mokini, Z.; Carradori, S.; Brocco, D.; Florio, R.; Grassadonia, A.; Cama, A. Drug repurposing, an attractive strategy in pancreatic cancer treatment: Preclinical and clinical updates. Cancers 2021, 13, 3946. [CrossRef]
  115. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
  116. Regulska, K.; Regulski, M.; Karolak, B.; Murias, M.; Stanisz, B. Can cardiovascular drugs support cancer treatment? The rationale for drug repurposing. Drug Discov. Today 2019, 24, 1059–1065. [CrossRef]
  117. Hashemzehi, M.; Rahmani, F.; Khoshakhlagh, M.; Avan, A.; Asgharzadeh, F.; Barneh, F.; Moradi-Marjaneh, R.; Soleimani, A.; Fiuji, H.; Ferns, G.A.; et al. Angiotensin receptor blocker Losartan inhibits tumor growth of colorectal cancer. Excli J. 2021, 20, 506. [CrossRef]
  118. Coulson, R.; Liew, S.H.; Connelly, A.A.; Yee, N.S.; Deb, S.; Kumar, B.; Vargas, A.C.; O’toole, S.A.; Parslow, A.C.; Poh, A.; et al. The angiotensin receptor blocker, Losartan, inhibits mammary tumor development and progression to invasive carcinoma. Oncotarget 2017, 8, 18640–18656. [CrossRef]
  119. Tabatabai, E.; Khazaei, M.; Asgharzadeh, F.; Nazari, S.E.; Shakour, N.; Fiuji, H.; Ziaeemehr, A.; Mostafapour, A.; Parizadeh, M.R.; Nouri, M.; et al. Inhibition of angiotensin II type 1 receptor by candesartan reduces tumor growth and ameliorates fibrosis in colorectal cancer. Excli J. 2021, 20, 863. [CrossRef]
  120. Asgharzadeh, F.; Mostafapour, A.; Ebrahimi, S.; Amerizadeh, F.; Sabbaghzadeh, R.; Hassanian, S.M.; Fakhraei, M.; Farshbaf, A.; Ferns, G.A.; Giovannetti, E.; et al. Inhibition of angiotensin pathway via valsartan reduces tumor growth in models of colorectal cancer. Toxicol. Appl. Pharmacol. 2022, 440, 115951. [CrossRef]
  121. Shebl, R. Anticancer potential of captopril and botulinum toxin type-A and associated p53 gene apototic stimulating activity. Iran. J. Pharm. Res. IJPR 2019, 18, 1967. [CrossRef]
  122. Hassani, B.; Attar, Z.; Firouzabadi, N. The renin-angiotensin-aldosterone system (RAAS) signaling pathways and cancer: Foes versus allies. Cancer Cell Int. 2023, 23, 254. [CrossRef]
  123. Carlos-Escalante, J.A.; de Jesús-Sánchez, M.; Rivas-Castro, A.; Pichardo-Rojas, P.S.; Arce, C.; Wegman-Ostrosky, T. The use of antihypertensive drugs as coadjuvant therapy in cancer. Front. Oncol. 2021, 11, 660943. [CrossRef]
  124. Ioakeim-Skoufa, I.; Tobajas-Ramos, N.; Menditto, E.; Aza-Pascual-Salcedo, M.; Gimeno-Miguel, A.; Orlando, V.; González-Rubio, F.; Fanlo-Villacampa, A.; Lasala-Aza, C.; Ostasz, E.; et al. Drug repurposing in oncology: A systematic review of randomized controlled clinical trials. Cancers 2023, 15, 2972. [CrossRef]
  125. DeLellis, L.; Veschi, S.; Tinari, N.; Mokini, Z.; Carradori, S.; Brocco, D.; Florio, R.; Grassadonia, A.; Cama, A. Drug repurposing, an attractive strategy in pancreatic cancer treatment: Preclinical and clinical updates. Cancers 2021, 13, 3946. [CrossRef]
  126. Tan, X.; Guo, S.; Wang, C. Propranolol in the treatment of infantile hemangiomas. Clinical, Cosmetic and Investigational Dermatology Clin. Cosmet. Investig. Dermatol. 2021, 1155–1163. [CrossRef]
  127. Kwak,J.H.; Yang, A.; Jung, H.L.; Kim, H.J.; Kim, D.S.; Shim, J.Y.; Shim, J.W. Cardiac Evaluation before and after Oral Propranolol Treatment for Infantile Hemangiomas. J. Clin. Med. 2024, 13, 3332. [CrossRef]
  128. Pooja B Rasal., et al. “Fisetin: From Dietary Source to Therapeutic Possibilities". Acta Scientific Nutritional Health 9.4 (2025): 84-103.
  129. Durgesh Pagar*, Dipika Gosavi, Gaurav Kasar, Nikita Jadhav, Vaibhav Pawar, Formulation and Evaluation of Multi-Herbal AntiDiabetic Cookies, Int. J. of Pharm. Sci., 2024, Vol 2, Issue 8, 3918-3923. https://doi.org/10.5281/zenodo.13380284
  130. Gaurav Kasarab, Pooja Rasal, Ritesh Khairnar, Revati Khairnar, Shubham Khaire, Yunus Ansari, Manoj Mahajan, Aman Upaganlawar, Amol Thakare, Chandrashekhar Upasani, Hepatoprotective Effect of Curcumin Microsponges against Paracetamol Induced Liver Toxicity in Rats, Int. J. of Pharm. Sci., 2024, Vol 2, Issue 1, 841-856. https://doi.org/10.5281/zenodo.10590649
  131. Kasar GN, Rasal PB, Surana KR, Patil CD, Upaganlawar AB, Mahajan SK. Unraveling Neonatal Neurology: Diagnosis, Management, and Lifelong Impact. J. Bio-X Res. 2025;8: Article 0067. https://doi. org/10.34133/jbioxresearch.0067
  132. Sonawane, R., Kasar, G., Chavan, D., Mahajan, M., Upaganlawar, A., & Upasani, C., (2024). Preliminary Screening of Anxiolytic and Anti-depressant Potential of QintroTM a Polyherbal Formulation on Alcohol Withdrawal Syndrome in Experimental Mice. J Basic Appl Pharm Sci, 2(1): 106. doi: https://doi.org/10.33790/jbaps1100106
  133. Gaurav N Kasar, Pooja B Rasal, Akanksha D Punekar, Pranoti P Nikam and Madhuri B Nagare. Metalloestrogens and Estrogen-Dependent Diseases: Unraveling the Environmental Influence on Hormonal Health. Biomed J Sci & Tech Res 61(3)-2025. BJSTR. MS.ID.009600.
  134. Bravo-Calderón, D.M.; Assao, A.; Garcia, N.G.; Coutinho-Camillo, C.M.; Roffé, M.; Germano, J.N.; Oliveira, D.T. Beta adrenergic receptor activation inhibits oral cancer migration and invasiveness. Arch. Oral Biol. 2020, 118, 104865. [CrossRef]
  135. Kwon, S.Y.; Chun, K.J.; Kil, H.K.; Jung, N.; Shin, H.-A.; Jang, J.Y.; Choi, H.G.; Oh, K.-H.; Kim, M.-S. β2 adrenergic receptor expression and the effects of norepinephrine and propranolol on various head and neck cancer subtypes. Oncol. Lett. 2021, 22, 1–8. [CrossRef]
  136. Fukushiro-Lopes, D.; Hegel, A.D.; Russo, A.; Senyuk, V.; Liotta, M.; Beeson, G.C.; Beeson, C.C.; Burdette, J.; Potkul, R.K.; Gentile, S. Repurposing Kir6/SUR2 channel activator minoxidil to arrests growth of gynecologic cancers. Front. Pharmacol. 2020, 11, 577. [CrossRef]
  137. Salanci, Š.; Vilková, M.; Martinez, L.; Mirossay, L.; Michalková, R.; Mojžiš, J. The Induction of G2/M Phase Cell Cycle Arrest and Apoptosis by the Chalcone Derivative 1C in Sensitive and Resistant Ovarian Cancer Cells Is Associated with ROS Generation. Int. J. Mol. Sci. 2024, 25, 7541. [CrossRef]
  138. Qiu, S.; Fraser, S.P.; Pires, W.; Djamgoz, M.B.A. Anti-invasive effects of minoxidil on human breast cancer cells: Combination with ranolazine. Clin. Exp. Metastasis 2022, 39, 679–689. [CrossRef]
  139. Wang, Y.; Jiang, H.; Wang, W.; Dai, J.; Tang, M.; Wei, Y.; Kuang, H.; Xu, G.; et al. Fenofibrate-induced mitochondrial dysfunction and metabolic reprogramming reversal: The anti-tumor effects in gastric carcinoma cells mediated by the PPAR pathway. Am. J. Transl. Res. 2020, 12, 428. [PubMed] [PubMed Central]
  140. Pasello, G.; Urso, L.; Conte, P.; Favaretto, A. Effects of sulfonylureas on tumor growth: A review of the literature. Oncol. 2013, 18, 1118–1125. [CrossRef]
  141. Zúñiga, L.; Cayo, A.; González, W.; Vilos, C.; Zúñiga, R. Potassium channels as a target for cancer therapy: Current perspectives. OncoTargets Ther. 2022, 15, 783. [CrossRef] [PubMed] [PubMed Central]
  142. 144.Correia, A.S.; Gärtner, F.; Vale, N. Drug combination and repurposing for cancer therapy: The example of breast cancer. Heliyon 2021, 7, e05948. [CrossRef] [PubMed]
  143. Kasar GN, Rasal PB, Patil CD, Mahajan SK, & Upaganlawar AB. Proteostasis in aging: mechanistic insights and therapeutic opportunities. Aging Pathobiol Ther, 2025, 7(1): 25-43. doi: 10.31491/ APT.2025.03.165
  144. Rasal PB, Kasar GN, Pagar DS, Upaganlawar AB, & Mahajan SK. Resilience in the depths: anemones as models for aging and regeneration research. Aging Pathobiol Ther, 2025, 7(3): 144-155. doi: 10.31491/APT.2025.09.179
  145. Surana, K., Jadhav, S., Khairnar, R., Ahire, E., & Kasar, G. (2025). In silico prediction of some indole derivatives against virb8 from Brucella suis and cyanobacterial membrane-bound manganese superoxide dismutase. Prospects in Pharmaceutical Sciences, 23(4), 37–46. https://doi.org/10.56782/pps.412
  146. Pradnya Jadhav, Gaurav Kasar, Pooja Rasal, Manoj Mahajan, Aman Upaganlawar, Chandrashekhar Upasani. Virgin Coconut Oil Solubilised Curcumin Protects Nephropathy in Diabetic Rats. J. Pharm. Res. 2023;22(2):87–92. https://doi.org/10.18579/jopcr/v22.2.23.22
  147. Vaibhavi Pagar, Gaurav Kasar*, Dipti Chavan, Dr. Chandrashekhar Patil, Dr. Sunil Mahajan, Zebrafish Model in Pharmaceutical Research: A Review, Int. J. Sci. R. Tech., 2025, 2 (5), 535-541. https://doi.org/10.5281/zenodo.15507701
  148. Wang, X.; Zhao, J.; Marostica, E.; Yuan, W.; Jin, J.; Zhang, J.; Li, R.; Tang, H.; Wang, K.; Li, Y.; et al. A pathology foundation model for cancer diagnosis and prognosis prediction. Nature 2024, 634, 970–978. [CrossRef]
  149. Parvathaneni, V.; Elbatanony, R.S.; Goyal, M.; Chavan, T.; Vega, N.; Kolluru, S.; Muth, A.; Gupta, V.; Kunda, N.K. Repurposing bedaquiline for effective non-small cell lung cancer (NSCLC) therapy as inhalable cyclodextrin-based molecular inclusion complexes. Int. J. Mol. Sci. 2021, 22, 4783. [CrossRef
  150. Fiorillo, M.; Lamb, R.; Tanowitz, H.B.; Cappello, A.R.; Martinez-Outschoorn, U.E.; Sotgia, F.; Lisanti, M.P. Bedaquiline, an FDA-approved antibiotic, inhibits mitochondrial function and potently blocks the proliferative expansion of stem-like cancer cells (CSCs). Aging 2016, 8, 1593. [CrossRef] [PubMed]
  151. Fu, L.; Jin, W.; Zhang, J.; Zhu, L.; Lu, J.; Zhen, Y.; Zhang, L.; Ouyang, L.; Liu, B.; Yu, H. Repurposing non-oncology small-molecule drugs to improve cancer therapy: Current situation and future directions. Acta Pharm. Sin. B 2022, 12, 532–557. [CrossRef]
  152. Li, J.; Qin, Y.; Zhao, C.; Zhang, Z.; Zhou, Z. Tetracycline antibiotics: Potential anticancer drugs. Eur. J. Pharmacol. 2023, 956, 175949. [CrossRef]
  153. Dong, Z.; Abbas, M.N.; Kausar, S.; Yang, J.; Li, L.; Tan, L.; Cui, H. Biological functions and molecular mechanisms of antibiotic tigecycline in the treatment of cancers. Int. J. Mol. Sci. 2019, 20, 3577. [CrossRef]
  154. Pourgholami, M.H.; Mekkawy, A.H.; Badar, S.; Morris, D.L. Minocycline inhibits growth of epithelial ovarian cancer. Gynecol. Oncol. 2012, 125, 433–440. [CrossRef] [PubMed]
  155. Afshari, A.R.; Mollazadeh, H.; Sahebkar, A. Minocycline in treating glioblastoma multiforme: Far beyond a conventional antibiotic. J. Oncol. 2020, 2020, 8659802. [CrossRef]
  156. Reed, G.A.; Schiller, G.J.; Kambhampati, S.; Tallman, M.S.; Douer, D.; Minden, M.D.; Yee, K.W.; Gupta, V.; Brandwein, J.; Jitkova, Y.; et al. A Phase 1 study of intravenous infusions of tigecycline in patients with acute myeloid leukemia. Cancer Med. 2016, 5, 3031–3040. [CrossRef
  157. Novella, P.; Salvatore, P.; Iula, D.V.; Catania, M.R.; Chiurazzi, F.; Raimondo, M.; Beneduce, G.; Cerchione, C.; Della Pepa, R.; Giordano, C.; et al. Tigecycline-Based Front-Line Antibiotic Therapy Significantly Decreases Mortality Among Patients with Neutropenic Enterocolitis Following Cytarabine-Containing Chemotherapy for the Remission Induction of Acute Myeloid Leukemia. Blood 2016, 128, 3550. [CrossRef]
  158. Aminzadeh-Gohari, S.; Weber, D.D.; Vidali, S.; Catalano, L.; Kofler, B.; Feichtinger, R.G. From old to new—Repurposing drugs to target mitochondrial energy metabolism in cancer. Semin. Cell Dev. Biol. 2020, 98, 211–223. [CrossRef] [PubMed]
  159. Wang, S.-F.; Tseng, L.-M.; Lee, H.-C. Role of mitochondrial alterations in human cancer progression and cancer immunity. J. Biomed. Sci. 2023, 30, 61. [CrossRef]
  160. Yang, Y.; An, Y.; Ren, M.; Wang, H.; Bai, J.; Du, W.; Kong, D. The mechanisms of action of mitochondrial targeting agents in cancer: Inhibiting oxidative phosphorylation and inducing apoptosis. Front. Pharmacol. 2023, 14, 1243613. [CrossRef]
  161. Bailly, C.; Vergoten, G. A new horizon for the old antibacterial drug clofoctol. Drug Discov. Today 2021, 26, 1302–1310. [CrossRef]
  162. Wang, M.; Shim, J.S.; Li, R.; Dang, Y.; He, Q.; Das, M.; O Liu, J. Identification of an old antibiotic clofoctol as a novel activator of unfolded protein response pathways and an inhibitor of prostate cancer. Br. J. Pharmacol. 2014, 171, 4478–4489. [CrossRef] [PubMed]
  163. van der Zanden, S.Y.; Qiao, X.; Neefjes, J. New insights into the activities and toxicities of the old anticancer drug doxorubicin. FEBS J. 2021, 288, 6095–6111. [CrossRef]
  164. Shandilya, M.; Sharma, S.; Das, P.P.; Charak, S. Molecular-level understanding of the anticancer action mechanism of anthracy clines. Adv. Precis. Med. Oncol. 2020. [CrossRef]
  165. Mukai, H.; Kogawa, T.; Matsubara, N.; Naito, Y.; Sasaki, M.; Hosono, A. A first-in-human Phase 1 study of epirubicin-conjugated polymer micelles (K-912/NC-6300) in patients with advanced or recurrent solid tumors. Investig. New Drugs 2017, 35, 307–314. [CrossRef]
  166. Pourgholami, M.H.; Mekkawy, A.H.; Badar, S.; Morris, D.L. Minocycline inhibits growth of epithelial ovarian cancer. Gynecol. Oncol. 2012, 125, 433–440. [CrossRef] [PubMed]
  167. Reed, G.A.; Schiller, G.J.; Kambhampati, S.; Tallman, M.S.; Douer, D.; Minden, M.D.; Yee, K.W.; Gupta, V.; Brandwein, J.; Jitkova, Y.; et al. A Phase 1 study of intravenous infusions of tigecycline in patients with acute myeloid leukemia. Cancer Med. 2016, 5, 3031–3040. [CrossRef]
  168. Novella, P.; Salvatore, P.; Iula, D.V.; Catania, M.R.; Chiurazzi, F.; Raimondo, M.; Beneduce, G.; Cerchione, C.; Della Pepa, R.; Giordano, C.; et al. Tigecycline-Based Front-Line Antibiotic Therapy Significantly Decreases Mortality Among Patients with Neutropenic Enterocolitis Following Cytarabine-Containing Chemotherapy for the Remission Induction of Acute Myeloid Leukemia. Blood 2016, 128, 3550. [CrossRef]
  169. 166.Wang, J.; Sun, D.; Huang, L.; Wang, S.; Jin, Y. Targeting reactive oxygen species capacity of tumor cells with repurposed drug as an anticancer therapy. Oxidative Med. Cell. Longev. 2021, 2021, 8532940. [CrossRef]
  170. Yadav, V.; Talwar, P. Repositioning of fluoroquinolones from antibiotic to anticancer agents: An underestimated truth. Biomed. Pharmacother. 2019, 111, 934–946. [CrossRef] [PubMed]
  171. Nowakowska, J.; Radomska, D.; Czarnomysy, R.; Marciniec, K. Recent Development of Fluoroquinolone Derivatives as Anticancer Agents. Molecules 2024, 29, 3538. [CrossRef] [PubMed] [PubMed Central]
  172. AbuBaih, R.H.; Fawzy, M.A.; Nazmy, M.H. The prospective potential of fluoroquinolones as anticancer agents. J. Mod. Res. 2023, 5, 4–10. [CrossRef]
  173. Zhou, W.; Wang, H.; Yang, Y.; Chen, Z.-S.; Zou, C.; Zhang, J. Chloroquine against malaria, cancers and viral diseases. Drug Discov. Today 2020, 25, 2012–2022. [CrossRef] [PubMed]
  174. Liu, Y.; Meng, Y.; Zhang, J.; Gu, L.; Shen, S.; Zhu, Y.; Wang, J. Pharmacology Progresses and Applications of Chloroquine in Cancer Therapy. Int. J. Nanomed. 2024, 6777–6809. [CrossRef] [PubMed]
  175. Mauthe, M.; Orhon, I.; Rocchi, C.; Zhou, X.; Luhr, M.; Hijlkema, K.-J.; Coppes, R.P.; Engedal, N.; Mari, M.; Reggiori, F. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 2018, 14, 1435–1455. [CrossRef] [PubMed]
  176. Vlachos, N.; Lampros, M.; Voulgaris, S.; Alexiou, G.A. Repurposing antipsychotics for cancer treatment. Biomedicines 2021, 9, 1785. [CrossRef] [PubMed]
  177. Lianos, G.D.; Alexiou, G.A.; Rausei, S.; Galani, V.; Mitsis, M.; Kyritsis, A.P. Repurposing antipsychotic drugs for cancer treatment: Current evidence and future perspectives. Expert Rev. Anticancer. Ther. 2022, 22, 131–134. [CrossRef]
  178. Moura, C.; Vale, N. The role of dopamine in repurposing drugs for oncology. Biomedicines 2023, 11, 1917. [CrossRef]
  179. Vasconcelos, M.H.; Palmeira, A.; Sousa, S.M.; Xavier, C.P.R. Repurposing some of the Well-Known Non-Steroid Anti-Inflammatory Drugs (NSAIDs) for Cancer Treatment. Curr. Top. Med. Chem. 2023, 23, 1171–1195. [CrossRef]
  180. Ozleyen, A.; Yilmaz, Y.B.; Donmez, S.; Atalay, H.N.; Antika, G.; Tumer, T.B. Looking at NSAIDs from a historical perspective and their current status in drug repurposing for cancer treatment and prevention. J. Cancer Res. Clin. Oncol. 2023, 149, 2095–2113. [CrossRef]
  181. Thiruchenthooran, V.; Sánchez-López, E.; Gliszczy´nska, A. Perspectives of the application of non-steroidal anti-inflammatory drugs in cancer therapy: Attempts to overcome their unfavorable side effects. Cancers 2023, 15, 475. [CrossRef] [PubMed]
  182. Bin Joo, Y.; Jung, S.M.; Park, Y.-J.; Kim, K.-J.; Park, K.-S. Use of disease-modifying antirheumatic drugs after cancer diagnosis in rheumatoid arthritis patients. J. Rheum. Dis. 2022, 29, 162–170. [CrossRef]
  183. De Sousa-Coelho, A.L.; Fraqueza, G.; Aureliano, M. Repurposing Therapeutic Drugs Complexed to Vanadium in Cancer. Pharmaceuticals 2023, 17, 12. [CrossRef] [PubMed] [PubMed Central]
  184. Calip, G.S.; Patel, P.R.; Sweiss, K.; Wu, Z.; Zhou, J.; Asfaw, A.A.; Adimadhyam, S.; Lee, T.A.; Chiu, B.C. Targets of biologic disease-modifying antirheumatic drugs and risk of multiple myeloma. Int. J. Cancer 2020, 147, 1300–1305. [CrossRef] [PubMed]
  185. Aroosa, M.; Malik, J.A.; Ahmed, S.; Bender, O.; Ahemad, N.; Anwar, S. The evidence for repurposing anti-epileptic drugs to target cancer. Mol. Biol. Rep. 2023, 50, 7667–7680. [CrossRef] [PubMed]
  186. Sulsenti, R.; Frossi, B.; Bongiovanni, L.; Cancila, V.; Ostano, P.; Fischetti, I.; Enriquez, C.; Guana, F.; Chiorino, G.; Tripodo, C.; et al. Repurposing of the antiepileptic drug levetiracetam to restrain neuroendocrine prostate cancer and inhibit mast cell support to adenocarcinoma. Front. Immunol. 2021, 12, 622001. [CrossRef] [PubMed]
  187. Malla, R.; Viswanathan, S.; Makena, S.; Kapoor, S.; Verma, D.; Raju, A.A.; Dunna, M.; Muniraj, N. Revitalizing Cancer Treatment: Exploring the Role of Drug Repurposing. Cancers 2024, 16, 1463. [CrossRef]
  188. Rizzo, A.; Donzelli, S.; Girgenti, V.; Sacconi, A.; Vasco, C.; Salmaggi, A.; Blandino, G.; Maschio, M.; Ciusani, E. In vitro antineoplastic effects of brivaracetam and lacosamide on human glioma cells. J. Exp. Clin. Cancer Res. 2017, 36, 1–13. [CrossRef]
  189. Moutal, A.; Villa, L.S.; Yeon, S.K.; Householder, K.T.; Park, K.D.; Sirianni, R.W.; Khanna, R. CRMP2 phosphorylation drives glioblastoma cell proliferation. Mol. Neurobiol. 2018, 55, 4403–4416. [CrossRef]
  190. Morales, X.; Peláez, R.; Garasa, S.; de Solórzano, C.O.; Rouzaut, A. CRMP2 as a candidate target to interfere with lung cancer cell migration. Biomolecules 2021, 11, 1533. [CrossRef]
  191. Costa, B.; Vale, N. Understanding Lamotrigine’s role in the CNS and possible future evolution. Int. J. Mol. Sci. 2023, 24, 6050. [CrossRef]
  192. Kim, K.J.; Jeun, S.H.; Sung, K.-W. Lamotrigine, an antiepileptic drug, inhibits 5-HT3 receptor currents in NCB-20 neuroblastoma cells. Korean J. Physiol. Pharmacol. Off. J. Korean Physiol. Soc. Korean Soc. Pharmacol. 2017, 21, 169. [CrossRef]
  193. Zhou, D.; Wang, L.; Cui, Q.; Iftikhar, R.; Xia, Y.; Xu, P. Repositioning lidocaine as an anticancer drug: The role beyond anesthesia. Front. Cell Dev. Biol. 2020, 8, 565. [CrossRef]
  194. Wu, K.-C.; Liao, K.-S.; Yeh, L.-R.; Wang, Y.-K. Drug repurposing: The mechanisms and signaling pathways of anticancer effects of anesthetics. Biomedicines 2022, 10, 1589. [CrossRef] [PubMed]
  195. Ioakeim-Skoufa I, Tobajas-Ramos N, Menditto E, Aza-Pascual-Salcedo M, Gimeno-Miguel A, Orlando V, González-Rubio F, Fanlo-Villacampa A, Lasala-Aza C, Ostasz E, Vicente-Romero J. Drug Repurposing in Oncology: A Systematic Review of Randomized Controlled Clinical Trials. Cancers (Basel). 2023 May 30;15(11):2972. doi: 10.3390/cancers15112972. PMID: 37296934; PMCID: PMC10251882.
  196. Al Khzem, A.H.; Gomaa, M.S.; Alturki, M.S.; Tawfeeq, N.; Sarafroz, M.; Alonaizi, S.M.; Al Faran, A.; Alrumaihi, L.A.; Alansari, F.A.; Alghamdi, A.A. Drug Repurposing for Cancer Treatment: A Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 12441. https://doi.org/10.3390/ijms252212441
  197. Robert Wieder, Nabil Adam, Drug repositioning for cancer in the era of AI, big omics, and real-world data, Critical Reviews in Oncology/Hematology, Volume 175, 2022, 103730, ISSN 1040-8428, https://doi.org/10.1016/j.critrevonc.2022.103730.
  198. 195.Kulkarni VS, Alagarsamy V, Solomon VR, Jose PA, Murugesan S. Drug Repurposing: An Effective Tool in Modern Drug Discovery. Russ J Bioorg Chem. 2023;49(2):157-166. doi: 10.1134/S1068162023020139. Epub 2023 Feb 21. PMID: 36852389; PMCID: PMC9945820.
  199. 21.March-Vila E., Pinzi L., Sturm N., Tinivella A., Engkvist O., Chen H., Rastelli G. Front. Pharmacol. 2017; 8:298. doi: 10.3389/fphar.2017.00298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. 4.Jin G., Wong S.T.C. Drug Discovery Today. 2014; 19:637–644. doi: 10.1016/j.drudis.2013.11.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. 198.Gonzalez-Fierro, A. & Dueñas-González, A. Drug repurposing for cancer therapy, easier said than done. Semin. Cancer Biol. 68, 123–131 (2021).
  202. 199.Breckenridge, A. & Jacob, R. Overcoming the legal and regulatory barriers to drug repurposing. Nat. Rev. Drug Discov. 18, 1–2 (2019).
  203. Uttam T, Subhashree S, Madhu P, et al. Drug repurposing approach to fight COVID-19. Pharmacol Rep. 2020;72(6):1479–1508.
  204. Yu J, Putcha P, Silva JM. Recovering drug-induced apoptosis subnetwork from connectivity map data. Biomed Res Int. 2015; 2015:708563.
  205. Lee SY, Song MY, Kim D, et al. A proteotranscriptomic-based computational drug-repositioning method for Alzheimer’s disease. Front Pharmacol. 2020; 10:1653.

Reference

  1. Piña-Sánchez P., Chávez-González A., Ruiz-Tachiquín M., Vadillo E., Monroy-García A.,             Montesinos J.J., Grajales R., de la Barrera M.G., Mayani H. Cancer biology, epidemiology, and   treatment in the 21st century: Current status and future challenges from a biomedical perspective. Cancer Control. 2021; 28:10732748211038735. doi: 10.1177/10732748211038735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Kasar GN, Rasal PB, Jagtap MN, Surana KR, Mahajan SK, Sonawane DD, Ahire ED. CAR T-cell structure, manufacturing, applications, and challenges in the management of community acquired diseases and disorders. Community Acquir Infect. 2025;12. doi:10.54844/cai.2024.0780
  3. Cooper G.M., Hausman R.E. The development and causes of cancer. Cell A Mol. Approach. 2000; 2:725–766. [Google Scholar]
  4. Correia A.S., Gärtner F., Vale N. Drug combination and repurposing for cancer therapy: The example of breast cancer. Heliyon. 2021;7: e05948. doi: 10.1016/j.heliyon. 2021.e05948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown J.S., Amend S.R., Austin R.H., Gatenby R.A., Hammarlund E.U., Pienta K.J. Updating the definition of cancer. Mol. Cancer Res. 2023; 21:1142–1147. doi: 10.1158/1541-7786.MCR-23-0411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goodman E.N. What is the Environment Doing to Our Genes? A Pedigree Analysis of the Possible Genetic Basis of a Set of Familial Clinical Disorders. Encompass; Tonbridge, UK: 2022. [Google Scholar]
  7. Ramalingam S., editor. Cancer Genes. Bentham Science Publishers; Sharjah, United Arab Emirates: 2023. [Google Scholar]
  8. Khan M., Pelengaris S., editors. The Molecular Biology of Cancer: A Bridge from Bench to Bedside. John Wiley & Sons; Hoboken, NJ, USA: 2013. [(accessed on 16 November 2024)]. Available online: https://library.iau.edu.sa/scholarly-journals/molecular-biology-cancer-bridge-bench-bedside-2nd/docview/1349242751/se-2. [Google Scholar]
  9. Hejmadi M. Introduction to Cancer Biology. Bookboon; London, UK: 2014. [Google Scholar]
  10. Pantziarka, P., Verbaanderd, C., Huys, I., Bouche, G. & Meheus, L. Repurposing drugs in oncology: from candidate selection to clinical adoption. Semin. Cancer Biol. 68, 186–191 (2021).
  11. Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. & Prunotto, M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug Discov. 16, 531–543 (2017).
  12. Shim, J. S. & Liu, J. O. Recent advances in drug repositioning for the discovery of new anticancer drugs. Int. J. Biol. Sci. 10, 654–663 (2014).
  13. Pillaiyar, T., Meenakshi Sundaram, S., Manickam, M. & Sankaranarayanan, M. A medicinal chemistry perspective of drug repositioning: recent advances and challenges in drug discovery. Eur. J. Med. Chem. 195, 112275 (2020).
  14. Moffat, J. G., Rudolph, J. & Bailey, D. Phenotypic screening in cancer drug discovery - past, present and future. Nat. Rev. Drug Discov. 13, 588–602 (2014).
  15. Rabben, H. L. et al. Computational drug repositioning and experimental validation of ivermectin in treatment of gastric cancer. Front. Pharmacol. 12, 625991 (2021).
  16. Parvathaneni, V., Kulkarni, N. S., Muth, A. & Gupta, V. Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov. Today 24, 2076–2085 (2019).
  17. Tanoli, Z. et al. Exploration of databases and methods supporting drug repurposing: a comprehensive survey. Brief. Bioinform. 22, 1656–1678 (2021).
  18. Huang, H., Zhang, P., Qu, X. A., Sanseau, P. & Yang, L. Systematic prediction of drug combinations based on clinical side-effects. Sci. Rep. 4, 7160 (2014).
  19. Kuhn, M., Campillos, M., Letunic, I., Jensen, L. J. & Bork, P. A side effect resource to capture phenotypic effects of drugs. Mol. Syst. Biol. 6, 343 (2010).
  20. Celebi, R., Bear Don’t Walk, O. 4th, Movva, R., Alpsoy, S. & Dumontier, M. In-silico prediction of synergistic anti-cancer drug combinations using Multi-omics Data. Sci. Rep. 9, 8949 (2019).
  21. Pallavi Aher, Janhavi Gangurde, Gaurav Kasar*, Durgesh Pagar, Dipti Chavan, Dr. Chandrashekhar Patil, Dr. Sunil Mahajan, Combating Antibiotic Resistance: Pharmacological Strategies and Emerging Therapeutic Innovations, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 5, 4247-4263. https://doi.org/10.5281/zenodo.15512619
  22. Kasar G, Rasal P, Mahajan M, Upaganlawar A, Upasani C. Effect of Lycopene alone and along with Coenzyme-Q10 in Streptozotocin Induced Peripheral Neuropathy: Biochemical & Behavioural Study. Natural Resources for Human Health. 2023;3(3):323–30. https://doi.org/10.53365/nrfhh/163104
  23. Xu, H., Jiao, D., Liu, A. & Wu, K. Tumor organoids: applications in cancer modeling and potentials in precision medicine. J. Hematol. Oncol. 15, 58 (2022).
  24. Kim, M. et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat. Commun. 10, 3991 (2019).
  25. Zhang, Z. et al. Establishment of patient-derived tumor spheroids for non-small cell lung cancer. PLoS One 13, e0194016 (2018).
  26. Kasagi, Y. et al. The esophageal organoid system reveals functional interplay between notch and cytokines in reactive epithelial changes. Cell Mol. Gastroenterol. Hepatol. 5, 333–352 (2018).
  27. Nanki, K. et al. Divergent routes toward Wnt and R-spondin niche independency during human gastric carcinogenesis. Cell 174, 856–869.e17 (2018).
  28. Kryeziu, K. et al. Increased sensitivity to SMAC mimetic LCL161 identified by longitudinal ex vivo pharmacogenomics of recurrent, KRAS mutated rectal cancer liver metastases. J. Transl. Med. 19, 384 (2021).
  29. Cao, W. et al. Modeling liver cancer and therapy responsiveness using organoids derived from primary mouse liver tumors. Carcinogenesis 40, 145–154 (2019).
  30. Nuciforo, S. et al. Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep. 24, 1363–1376 (2018).
  31. Uemura, N. et al. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med. 345, 784–789 (2001).
  32. Vanhaelen, Q. et al. Design of efficient computational workflows for in silico drug repurposing. Drug Discov. Today 22, 210–222 (2017).
  33. Masoudi-Sobhanzadeh, Y., Omidi, Y., Amanlou, M. & Masoudi-Nejad, A. Drug databases and their contributions to drug repurposing. Genomics 112, 1087–1095 (2020).
  34. Mottini, C., Napolitano, F., Li, Z., Gao, X. & Cardone, L. Computer-aided drug repurposing for cancer therapy: approaches and opportunities to challenge anticancer targets. Semin. Cancer Biol. 68, 59–74 (2021).
  35. Issa, N. T., Stathias, V., Schürer, S. & Dakshanamurthy, S. Machine and deep learning approaches for cancer drug repurposing. Semin. Cancer Biol. 68, 132–142 (2021).
  36. Lotfi Shahreza, M., Ghadiri, N., Mousavi, S. R., Varshosaz, J. & Green, J. R. A review of network-based approaches to drug repositioning. Brief. Bioinform. 19, 878–892 (2018).
  37. Jarada, T. N., Rokne, J. G. & Alhajj, R. A review of computational drug repositioning: strategies, approaches, opportunities, challenges, and directions. J. Cheminform. 12, 46 (2020).
  38. Montalvo-Casimiro, M. et al. Epidrug repurposing: discovering new faces of old acquaintances in cancer therapy. Front. Oncol. 10, 605386 (2020).
  39. Serafin, M. B. et al. Drug repositioning in oncology. Am. J. Ther. 28, e111–e117 (2021).
  40. Hurle, M. R. et al. Computational drug repositioning: from data to therapeutics. Clin. Pharmacol. Ther. 93, 335–341 (2013).
  41. Khaladkar, M. et al. Uncovering novel repositioning opportunities using the Open Targets platform. Drug Discov. Today 22, 1800–1807 (2017).
  42. Pushpakom, S. et al. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov. 18, 41–58 (2019).
  43. Adasme, M. F., Parisi, D., Sveshnikova, A. & Schroeder, M. Structure-based drug repositioning: potential and limits. Semin. Cancer Biol. 68, 192–198 (2021).
  44. Würth, R. et al. Drug-repositioning opportunities for cancer therapy: novel molecular targets for known compounds. Drug Discov. Today 21, 190–199 (2016).
  45. Jin, G. & Wong, S. T. C. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov. Today 19, 637–644 (2014).
  46. Rodrigues, R.; Duarte, D.; Vale, N. Drug repurposing in cancer therapy: Influence of patient’s genetic background in breast cancer treatment. Int. J. Mol. Sci. 2022, 23, 4280. [CrossRef]
  47. Aggarwal, S.; Verma, S.S.; Aggarwal, S.; Gupta, S.C. Drug repurposing for breast cancer therapy: Old weapon for new battle. Semin. Cancer Biol. 2021, 68, 8–20. [CrossRef]
  48. Elwood, P.; Morgan, G.; Watkins, J.; Protty, M.; Mason, M.; Adams, R.; Dolwani, S.; Pickering, J.; Delon, C.; Longley, M. Aspirin and cancer treatment: Systematic reviews and meta-analyses of evidence: For and against. Br. J. Cancer 2024, 130, 3–8. [CrossRef]
  49. Zhang, X.; Du, R.; Luo, N.; Xiang, R.; Shen, W. Aspirin mediates histone methylation that inhibits inflammation-related stemness gene expression to diminish cancer stemness via COX-independent manner. Stem Cell Res. Ther. 2020, 11, 1–15. [CrossRef]
  50. Guo,Y.; Liu, Y.; Zhang, C.; Su, Z.-Y.; Li, W.; Huang, M.-T.; Kong, A.-N.T. The epigenetic effects of aspirin: The modification of histone H3 lysine 27 acetylation in the prevention of colon carcinogenesis in azoxymethane-and dextran sulfate sodium-treated CF-1 mice. Carcinogenesis 2016, 37, 616–624. [CrossRef]
  51. Elwood, P.; Protty, M.; Morgan, G.; Pickering, J.; Delon, C.; Watkins, J. Aspirin and cancer: Biological mechanisms and clinical outcomes. Open Biol. 2022, 12, 220124. [CrossRef] [PubMed]
  52. Motta, R.; Cabezas-Camarero, S.; Torres-Mattos, C.; Riquelme, A.; Calle, A.; Figueroa, A.; Sotelo, M.J. Immunotherapy in microsatellite instability metastatic colorectal cancer: Current status and future perspectives. J. Clin. Transl. Res. 2021, 7, 511. [PubMed] [PubMed Central]
  53. Nounu, A.; Greenhough, A.; Heesom, K.J.; Richmond, R.C.; Zheng, J.; Weinstein, S.J.; Albanes, D.; Baron, J.A.; Hopper, J.L.; Figueiredo, J.C.; et al. A combined proteomics and Mendelianrand omization approach to investigate the effects of aspirin-targeted proteins on colorectal cancer. Cancer Epidemiol. Biomark. Prev. 2021, 30, 564–575. [CrossRef] [PubMed]
  54. Malik, J.A.; Ahmed, S.; Jan, B.; Bender, O.; Al Hagbani, T.; Alqarni, A.; Anwar, S. Drugs repurposed: An advanced step towards the treatment of breast cancer and associated challenges. Biomed. Pharmacother. 2022, 145, 112375. [CrossRef]
  55. Lord, S.R.; Harris, A.L. Is it still worth pursuing the repurposing of metformin as a cancer therapeutic? Br. J. Cancer 2023, 128, 958–966. [CrossRef]
  56. Jourdan, J.-P.; Bureau, R.; Rochais, C.; Dallemagne, P. Drug repositioning: A brief overview. J. Pharm. Pharmacol. 2020, 72, 1145–1151. [CrossRef]
  57. Siddiqui, S.; Deshmukh, A.J.; Mudaliar, P.; Nalawade, A.J.; Iyer, D.; Aich, J. Drug repurposing: Re-inventing therapies for cancer without re-entering the development pipeline—A review. J. Egypt. Natl. Cancer Inst. 2022, 34, 33. [CrossRef]
  58. Zhu,L.; Yang, K.; Ren, Z.; Yin, D.; Zhou, Y. Metformin as anticancer agent and adjuvant in cancer combination therapy: Current progress and future prospect. Transl. Oncol. Vol. 2024, 44, 101945. [CrossRef]
  59. LaMoia, T.E.; Shulman, G.I. Cellular and molecular mechanisms of metformin action. Endocr. Rev. 2021, 42, 77–96. [CrossRef]
  60. Bose, S.; Zhang, C.; Le, A. Glucose metabolism in cancer: The Warburg effect and beyond. Adv. Exp. Med. Biol. 2021, 1311, 3–15. Available online: http://www.springer.com/series/5584 (accessed on 16 November 2024).
  61. Kasar GN, Rasal PB, Upaganlawar AB, Pagar DS, Surana KR, Mahajan SK, Sonawane DD. Navigating dysbiosis: Insights into gut microbiota disruption and health outcomes, Community Acquir Infect. 2025;12. doi:10.54844/cai.2024.0778.
  62. Sonawane D A, Mahajan SK, Patil C, Pagar D, Kasar G, Exploring the Role of Natural Agents in the Management of Diabetic-Induced Neuropathy, Asian Journal of Pharmaceutical Research and Development. 2025; 13(5):89-96, DOI: http://dx.doi.org/10.22270/ajprd.v13i5.1633
  63. Kiran Aher, Nandini Bagul, Manjusha Chavan, Gaurav Kasar*, Dipti Chavan, Dr. Chandrashekhar Patil, Dr. Sunil Mahajan, Advances in Blood Cancer: Pathophysiology, Diagnosis and Emerging Therapeutic Strategies, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 5, 4218-4228. https://doi.org/10.5281/zenodo.15512403
  64. Rasal, P. B.., Kasar, G. N., Mahajan, M. S., Upaganlawar, A. B., & Upasani, C. D. (2023). Ameliorative effect of lycopene alone and in combination with coenzyme Q10 in streptozotocin-induced diabetic nephropathy in experimental rats. International Journal of Plant Based Pharmaceuticals, 3(1), 123-130, https://doi.org/10.29228/ijpbp.24.
  65. Surana, K. R., Kasar, G. N., & Mahajan, S. K. (Eds.). (2025). Computational Drug Design and Development: Artificial Intelligence, Molecular Modeling, and Structure-Based Discovery. Deep Science Publishing. https://doi.org/10.70593/978-93-7185-021-6
  66. Brown, J.R.; Chan, D.K.; Shank, J.J.; Griffith, K.A.; Fan, H.; Szulawski, R.; Yang, K.; Reynolds, R.K.; Johnston, C.; McLean, K.; et al. Phase II clinical trial of metformin as a cancer stem cell–targeting agent in ovarian cancer. JCI Insight 2020, 5, e133247. [CrossRef]
  67. Arend, R.C.; Londoño-Joshi, A.I.; Gangrade, A.; Katre, A.A.; Kurpad, C.; Li, Y.; Samant, R.S.; Li, P.-K.; Landen, C.N.; Yang, E.S.; et al. Niclosamide and its analogs are potent inhibitors of Wnt/β-catenin, mTOR and STAT3 signaling in ovarian cancer. Oncotarget 2016, 7, 86803. [CrossRef]
  68. Wang, J.; Ren, X.-R.; Piao, H.; Zhao, S.; Osada, T.; Premont, R.T.; Mook, R.A.; Morse, M.A.; Lyerly, H.K.; Chen, W. Niclosamide induced Wnt signaling inhibition in colorectal cancer is mediated by autophagy. Biochem. J. 2019, 476, 535–546. [CrossRef]
  69. Hamilton, G.; Rath, B. Repurposing of anthelminthics as anticancer drugs. Oncomedicine 2018, 3, 1–8. [CrossRef]
  70. Mussin, N.; Oh, S.C.; Lee, K.-W.; Park, M.Y.; Seo, S.; Yi, N.-J.; Kim, H.; Yoon, K.C.; Ahn, S.-W.; Kim, H.-S.; et al. Sirolimus and metformin synergistically inhibits colon cancer in vitro and in vivo. J. Korean Med. Sci. 2017, 32, 1385–1395. [CrossRef]
  71. Sanchez-Plumed, J.A.; Molina, M.G.; Alonso, A.; Arias, M. Sirolimus, the first mTOR inhibitor. Nefrología 2006, 26, 21–32
  72. Granata, S.; Mercuri, S.; Troise, D.; Gesualdo, L.; Stallone, G.; Zaza, G. mTOR-inhibitors and post-transplant diabetes mellitus: A link still debated in kidney transplantation. Front. Med. 2023, 10, 1168967. [CrossRef]
  73. Kalyanaraman, B.; Cheng, G.; Hardy, M.; Ouari, O.; Sikora, A.; Zielonka, J.; Dwinell, M.B. Modified metformin as a more potent anticancer drug: Mitochondrial inhibition, redox signaling, antiproliferative effects and future EPR studies. Cell Biochem. Biophys. 2017, 75, 311–317. [CrossRef] [PubMed]
  74. Cheng, G.; Zielonka, J.; Ouari, O.; Lopez, M.; McAllister, D.; Boyle, K.; Barrios, C.S.; Weber, J.J.; Johnson, B.D.; Hardy, M.; et al. Mitochondria-targeted analogues of metformin exhibit enhanced antiproliferative and radio sensitizing effects in pancreatic cancer cells. Cancer Res. 2016, 76, 3904–3915. [CrossRef]
  75. Amengual-Cladera, E.; Morla-Barcelo, P.M.; Morán-Costoya, A.; Sastre-Serra, J.; Pons, D.G.; Valle, A.; Roca, P.; Nadal-Serrano, M. Metformin: From Diabetes to Cancer—Unveiling Molecular Mechanisms and Therapeutic Strategies. Biology 2024, 13, 302. [CrossRef] [PubMed]
  76. Raafat, S.N.; El Wahed, S.A.; Badawi, N.M.; Saber, M.M.; Abdollah, M.R. Enhancing the anticancer potential of metformin: Fabrication of efficient nanospanlastics, in vitro cytotoxic studies on HEP-2 cells and reactome enhanced pathway analysis. Int. J. Pharm. X 2023, 6, 100215. [CrossRef]
  77. Kole, L.; Sarkar, M.; Deb, A.; Giri, B. Pioglitazone, an anti-diabetic drug requires sustained MAPK activation for its anti-tumor activity in MCF7 breast cancer cells, independent of PPAR-γ pathway. Pharmacol. Rep. 2016, 68, 144–154. [CrossRef]
  78. Chi, T.; Wang, M.; Wang, X.; Yang, K.; Xie, F.; Liao, Z.; Wei, P. PPAR-γ modulators as current and potential cancer treatments. Front. Oncol. 2021, 11, 737776. [CrossRef]
  79. Tan, Y.; Wang, M.; Yang, K.; Chi, T.; Liao, Z.; Wei, P. PPAR-α modulators as current and potential cancer treatments. Front. Oncol. 2021, 11, 599995. [CrossRef] [PubMed]
  80. Mirza, A.Z.; Althagafi, I.I.; Shamshad, H. Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications. Eur. J. Med. Chem. 2019, 166, 502–513. [CrossRef] [PubMed]
  81. Galal, M.A.; Al-Rimawi, M.; Hajeer, A.; Dahman, H.; Alouch, S.; Aljada, A. Metformin: A Dual-Role Player in Cancer Treatment and Prevention. Int. J. Mol. Sci. 2024, 25, 4083. [CrossRef] [PubMed]
  82. Hua, Y.; Zheng, Y.; Yao, Y.; Jia, R.; Ge, S.; Zhuang, A. Metformin and cancer hallmarks: Shedding new lights on therapeutic repurposing. J. Transl. Med. 2023, 21, 403. [CrossRef]
  83. Brown, J.R.; Chan, D.K.; Shank, J.J.; Griffith, K.A.; Fan, H.; Szulawski, R.; Yang, K.; Reynolds, R.K.; Johnston, C.; McLean, K.; et al. Phase II clinical trial of metformin as a cancer stem cell–targeting agent in ovarian cancer. JCI Insight 2020, 5, e133247. [CrossRef
  84. Schcolnik-Cabrera, A.; Juárez-López, D.; Duenas-Gonzalez, A. Perspectives on Drug Repurposing. Curr. Med. Chem. 2021, 28, 2085–2099. [CrossRef] [PubMed]
  85. Hijazi, M.A.; Gessner, A.; El-Najjar, N. Repurposing of chronically used drugs in cancer therapy: A chance to grasp. Cancers 2023, 15, 3199. [CrossRef]
  86. Kirtonia, A.; Gala, K.; Fernandes, S.G.; Pandya, G.; Pandey, A.K.; Sethi, G.; Khattar, E.; Garg, M. Repurposing of drugs: An attractive pharmacological strategy for cancer therapeutics. Semin. Cancer Biol. 2021, 68, 258–278. [CrossRef]
  87. D?abrowski, M. Diabetes, antidiabetic medications and cancer risk in type 2 diabetes: Focus on SGLT-2 inhibitors. Int. J. Mol. Sci. 2021, 22, 1680. [CrossRef]
  88. Younis, N.S.; Ghanim, A.M.H.; Saber, S. Mebendazole augments sensitivity to sorafenib by targeting MAPK and BCL-2 signalling in n-nitrosodiethylamine-induced murine hepatocellular carcinoma. Sci. Rep. 2019, 9, 19095. [CrossRef]
  89. Chen, H.; Weng, Z.; Xu, C. Albendazole suppresses cell proliferation and migration and induces apoptosis in human pancreatic cancer cells. Anticancer. Drugs 2020, 31, 431–439. [CrossRef]
  90. Lee, M.; Chen, Y.; Hsu, Y.; Lin, B. Niclosamide inhibits the cell proliferation and enhances the responsiveness of esophageal cancer cells to chemotherapeutic agents. Oncol. Rep. 2020, 43, 549–561. [CrossRef]
  91. Xing, X.; Zhou, Z.; Peng, H.; Cheng, S. Anticancer role of flubendazole: Effects and molecular mechanisms. Oncol. Lett. 2024, 28, 558. [CrossRef]
  92. Venugopal, S.; Kaur, B.; Verma, A.; Wadhwa, P.; Magan, M.; Hudda, S.; Kakoty, V. Recent advances of benzimidazole as anticancer agents. Chem. Biol. Drug Des. 2023, 102, 357–376. [CrossRef]
  93. 93.Hijazi, M.A.; Gessner, A.; El-Najjar, N. Repurposing of chronically used drugs in cancer therapy: A chance to grasp. Cancers 2023, 15, 3199. [CrossRef]
  94. Pantziarka, P.; Bouche, G.; Meheus, L.; Sukhatme, V.; Sukhatme, V.P. Repurposing Drugs in Oncology (ReDO)—Mebendazole as an anticancer agent. Ecancermedicalscience 2014, 8, 443. [CrossRef]
  95. Laudisi, F.; Marônek, M.; Di Grazia, A.; Monteleone, G.; Stolfi, C. Repositioning of anthelmintic drugs for the treatment of cancers of the digestive system. Int. J. Mol. Sci. 2020, 21, 4957. [CrossRef]
  96. Younis, N.S.; Ghanim, A.M.H.; Saber, S. Mebendazole augments sensitivity to sorafenib by targeting MAPK and BCL-2 signalling in n-nitrosodiethylamine-induced murine hepatocellular carcinoma. Sci. Rep. 2019, 9, 19095. [CrossRef]
  97. Mohi-Ud-Din, R.; Chawla, A.; Sharma, P.; Mir, P.A.; Potoo, F.H.; Reiner, Ž.; Reiner, I.; Ate¸s¸sahin, D.A.; Sharifi-Rad, J.; Mir, R.H.; et al. Repurposing approved non-oncology drugs for cancer therapy: A comprehensive review of mechanisms, efficacy, and clinical prospects. Eur. J. Med. Res. 2023, 28, 345. [CrossRef]
  98. Guerini, A.E.; Triggiani, L.; Maddalo, M.; Bonù, M.L.; Frassine, F.; Baiguini, A.; Alghisi, A.; Tomasini, D.; Borghetti, P.; Pasinetti, N.; et al. Mebendazole as a candidate for drug repurposing in oncology: An extensive review of current literature. Cancers 2019, 11, 1284. [CrossRef]
  99. Rushworth, L.K.; Hewit, K.; Munnings-Tomes, S.; Somani, S.; James, D.; Shanks, E.; Dufès, C.; Straube, A.; Patel, R.; Leung, H.Y. Repurposing screen identifies mebendazole as a clinical candidate to synergise with docetaxel for prostate cancer treatment. Br. J. Cancer 2020, 122, 517–527. [CrossRef]
  100. Zhang, Z.; Ji, J.; Liu, H. Drug repurposing in oncology: Current evidence and future direction. Curr. Med. Chem. 2021, 28, 2175–2194. [CrossRef]
  101. Pinto, L.C.; Mesquita, F.P.; Soares, B.M.; da Silva, E.L.; Puty, B.; de Oliveira, E.H.C.; Burbano, R.R.; Montenegro, R.C. Mebendazole induces apoptosis via C-MYC inactivation in malignant ascites cell line (AGP01). Toxicol. Vitr. 2019, 60, 305–312. [CrossRef] [PubMed]
  102. Chai, J.-Y.; Jung, B.-K.; Hong, S.-J. Albendazole and mebendazole as anti-parasitic and anticancer agents: An update. Korean J. Parasitol. 2021, 59, 189. [CrossRef] [PubMed] [PubMed Central]
  103. Lee, M.; Chen, Y.; Hsu, Y.; Lin, B. Niclosamide inhibits the cell proliferation and enhances the responsiveness of esophageal cancer cells to chemotherapeutic agents. Oncol. Rep. 2020, 43, 549–561. [CrossRef]
  104. Zhang, Z.; Zhou, L.; Xie, N.; Nice, E.C.; Zhang, T.; Cui, Y.; Huang, C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct. Target. Ther. 2020, 5, 113. [CrossRef]
  105. Lu, L.; Dong, J.; Wang, L.; Xia, Q.; Zhang, D.; Kim, H.; Yin, T.; Fan, S.; Shen, Q. Activation of STAT3 and Bcl-2 and reduction of reactive oxygen species (ROS) promote radioresistance in breast cancer and overcome of radioresistance with niclosamide. Oncogene 2018, 37, 5292–5304. [CrossRef]
  106. Arend, R.C.; Londoño-Joshi, A.I.; Gangrade, A.; Katre, A.A.; Kurpad, C.; Li, Y.; Samant, R.S.; Li, P.-K.; Landen, C.N.; Yang, E.S.; et al. Niclosamide and its analogs are potent inhibitors of Wnt/β-catenin, mTOR and STAT3 signaling in ovarian cancer. Oncotarget 2016, 7, 86803. [CrossRef]
  107. Wang, J.; Ren, X.-R.; Piao, H.; Zhao, S.; Osada, T.; Premont, R.T.; Mook, R.A.; Morse, M.A.; Lyerly, H.K.; Chen, W. Niclosamide induced Wnt signaling inhibition in colorectal cancer is mediated by autophagy. Biochem. J. 2019, 476, 535–546. [CrossRef]
  108. Hamilton, G.; Rath, B. Repurposing of anthelminthics as anticancer drugs. Oncomedicine 2018, 3, 1–8. [CrossRef]
  109. Cao, B.; Li, J.; Zhu, J.; Shen, M.; Han, K.; Zhang, Z.; Yu, Y.; Wang, Y.; Wu, D.; Chen, S.; et al. The antiparasitic clioquinol induces apoptosis in leukemia and myeloma cells by inhibiting histone deacetylase activity. J. Biol. Chem. 2013, 288, 34181–34189. [CrossRef]
  110. Cao,B.; Shen, M.; Wu, D.; Du, J.; Zhu, J.; Chen, S.; Sun, A.; Tang, X.; Xu, Z.; Kong, Y.; et al. The Proteasomal Inhibitor Clioquinol Induces Apoptosis in Leukemia and Myeloma Cells by Inhibiting Histone Deacetylase Activity. Blood 2012, 120, 2449. [CrossRef]
  111. Pfab, C.; Schnobrich, L.; Eldnasoury, S.; Gessner, A.; El-Najjar, N. Repurposing of antimicrobial agents for cancer therapy: What do weknow? Cancers 2021, 13, 3193. [CrossRef]
  112. Aldea, M.; Michot, J.-M.; Danlos, F.-X.; Ribas, A.; Soria, J.-C. Repurposing of anticancer drugs expands possibilities for antiviral and anti-inflammatory discovery in COVID-19. Cancer Discov. 2021, 11, 1336–1344. [CrossRef]
  113. Pal, D.; Song, I.-H.; Warkad, S.D.; Song, K.-S.; Yeom, G.S.; Saha, S.; Shinde, P.B.; Nimse, S.B. Indazole-based microtubule-targeting agents as potential candidates for anticancer drugs discovery. Bioorganic Chem. 2022, 122, 105735. [CrossRef]
  114. DeLellis, L.; Veschi, S.; Tinari, N.; Mokini, Z.; Carradori, S.; Brocco, D.; Florio, R.; Grassadonia, A.; Cama, A. Drug repurposing, an attractive strategy in pancreatic cancer treatment: Preclinical and clinical updates. Cancers 2021, 13, 3946. [CrossRef]
  115. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
  116. Regulska, K.; Regulski, M.; Karolak, B.; Murias, M.; Stanisz, B. Can cardiovascular drugs support cancer treatment? The rationale for drug repurposing. Drug Discov. Today 2019, 24, 1059–1065. [CrossRef]
  117. Hashemzehi, M.; Rahmani, F.; Khoshakhlagh, M.; Avan, A.; Asgharzadeh, F.; Barneh, F.; Moradi-Marjaneh, R.; Soleimani, A.; Fiuji, H.; Ferns, G.A.; et al. Angiotensin receptor blocker Losartan inhibits tumor growth of colorectal cancer. Excli J. 2021, 20, 506. [CrossRef]
  118. Coulson, R.; Liew, S.H.; Connelly, A.A.; Yee, N.S.; Deb, S.; Kumar, B.; Vargas, A.C.; O’toole, S.A.; Parslow, A.C.; Poh, A.; et al. The angiotensin receptor blocker, Losartan, inhibits mammary tumor development and progression to invasive carcinoma. Oncotarget 2017, 8, 18640–18656. [CrossRef]
  119. Tabatabai, E.; Khazaei, M.; Asgharzadeh, F.; Nazari, S.E.; Shakour, N.; Fiuji, H.; Ziaeemehr, A.; Mostafapour, A.; Parizadeh, M.R.; Nouri, M.; et al. Inhibition of angiotensin II type 1 receptor by candesartan reduces tumor growth and ameliorates fibrosis in colorectal cancer. Excli J. 2021, 20, 863. [CrossRef]
  120. Asgharzadeh, F.; Mostafapour, A.; Ebrahimi, S.; Amerizadeh, F.; Sabbaghzadeh, R.; Hassanian, S.M.; Fakhraei, M.; Farshbaf, A.; Ferns, G.A.; Giovannetti, E.; et al. Inhibition of angiotensin pathway via valsartan reduces tumor growth in models of colorectal cancer. Toxicol. Appl. Pharmacol. 2022, 440, 115951. [CrossRef]
  121. Shebl, R. Anticancer potential of captopril and botulinum toxin type-A and associated p53 gene apototic stimulating activity. Iran. J. Pharm. Res. IJPR 2019, 18, 1967. [CrossRef]
  122. Hassani, B.; Attar, Z.; Firouzabadi, N. The renin-angiotensin-aldosterone system (RAAS) signaling pathways and cancer: Foes versus allies. Cancer Cell Int. 2023, 23, 254. [CrossRef]
  123. Carlos-Escalante, J.A.; de Jesús-Sánchez, M.; Rivas-Castro, A.; Pichardo-Rojas, P.S.; Arce, C.; Wegman-Ostrosky, T. The use of antihypertensive drugs as coadjuvant therapy in cancer. Front. Oncol. 2021, 11, 660943. [CrossRef]
  124. Ioakeim-Skoufa, I.; Tobajas-Ramos, N.; Menditto, E.; Aza-Pascual-Salcedo, M.; Gimeno-Miguel, A.; Orlando, V.; González-Rubio, F.; Fanlo-Villacampa, A.; Lasala-Aza, C.; Ostasz, E.; et al. Drug repurposing in oncology: A systematic review of randomized controlled clinical trials. Cancers 2023, 15, 2972. [CrossRef]
  125. DeLellis, L.; Veschi, S.; Tinari, N.; Mokini, Z.; Carradori, S.; Brocco, D.; Florio, R.; Grassadonia, A.; Cama, A. Drug repurposing, an attractive strategy in pancreatic cancer treatment: Preclinical and clinical updates. Cancers 2021, 13, 3946. [CrossRef]
  126. Tan, X.; Guo, S.; Wang, C. Propranolol in the treatment of infantile hemangiomas. Clinical, Cosmetic and Investigational Dermatology Clin. Cosmet. Investig. Dermatol. 2021, 1155–1163. [CrossRef]
  127. Kwak,J.H.; Yang, A.; Jung, H.L.; Kim, H.J.; Kim, D.S.; Shim, J.Y.; Shim, J.W. Cardiac Evaluation before and after Oral Propranolol Treatment for Infantile Hemangiomas. J. Clin. Med. 2024, 13, 3332. [CrossRef]
  128. Pooja B Rasal., et al. “Fisetin: From Dietary Source to Therapeutic Possibilities". Acta Scientific Nutritional Health 9.4 (2025): 84-103.
  129. Durgesh Pagar*, Dipika Gosavi, Gaurav Kasar, Nikita Jadhav, Vaibhav Pawar, Formulation and Evaluation of Multi-Herbal AntiDiabetic Cookies, Int. J. of Pharm. Sci., 2024, Vol 2, Issue 8, 3918-3923. https://doi.org/10.5281/zenodo.13380284
  130. Gaurav Kasarab, Pooja Rasal, Ritesh Khairnar, Revati Khairnar, Shubham Khaire, Yunus Ansari, Manoj Mahajan, Aman Upaganlawar, Amol Thakare, Chandrashekhar Upasani, Hepatoprotective Effect of Curcumin Microsponges against Paracetamol Induced Liver Toxicity in Rats, Int. J. of Pharm. Sci., 2024, Vol 2, Issue 1, 841-856. https://doi.org/10.5281/zenodo.10590649
  131. Kasar GN, Rasal PB, Surana KR, Patil CD, Upaganlawar AB, Mahajan SK. Unraveling Neonatal Neurology: Diagnosis, Management, and Lifelong Impact. J. Bio-X Res. 2025;8: Article 0067. https://doi. org/10.34133/jbioxresearch.0067
  132. Sonawane, R., Kasar, G., Chavan, D., Mahajan, M., Upaganlawar, A., & Upasani, C., (2024). Preliminary Screening of Anxiolytic and Anti-depressant Potential of QintroTM a Polyherbal Formulation on Alcohol Withdrawal Syndrome in Experimental Mice. J Basic Appl Pharm Sci, 2(1): 106. doi: https://doi.org/10.33790/jbaps1100106
  133. Gaurav N Kasar, Pooja B Rasal, Akanksha D Punekar, Pranoti P Nikam and Madhuri B Nagare. Metalloestrogens and Estrogen-Dependent Diseases: Unraveling the Environmental Influence on Hormonal Health. Biomed J Sci & Tech Res 61(3)-2025. BJSTR. MS.ID.009600.
  134. Bravo-Calderón, D.M.; Assao, A.; Garcia, N.G.; Coutinho-Camillo, C.M.; Roffé, M.; Germano, J.N.; Oliveira, D.T. Beta adrenergic receptor activation inhibits oral cancer migration and invasiveness. Arch. Oral Biol. 2020, 118, 104865. [CrossRef]
  135. Kwon, S.Y.; Chun, K.J.; Kil, H.K.; Jung, N.; Shin, H.-A.; Jang, J.Y.; Choi, H.G.; Oh, K.-H.; Kim, M.-S. β2 adrenergic receptor expression and the effects of norepinephrine and propranolol on various head and neck cancer subtypes. Oncol. Lett. 2021, 22, 1–8. [CrossRef]
  136. Fukushiro-Lopes, D.; Hegel, A.D.; Russo, A.; Senyuk, V.; Liotta, M.; Beeson, G.C.; Beeson, C.C.; Burdette, J.; Potkul, R.K.; Gentile, S. Repurposing Kir6/SUR2 channel activator minoxidil to arrests growth of gynecologic cancers. Front. Pharmacol. 2020, 11, 577. [CrossRef]
  137. Salanci, Š.; Vilková, M.; Martinez, L.; Mirossay, L.; Michalková, R.; Mojžiš, J. The Induction of G2/M Phase Cell Cycle Arrest and Apoptosis by the Chalcone Derivative 1C in Sensitive and Resistant Ovarian Cancer Cells Is Associated with ROS Generation. Int. J. Mol. Sci. 2024, 25, 7541. [CrossRef]
  138. Qiu, S.; Fraser, S.P.; Pires, W.; Djamgoz, M.B.A. Anti-invasive effects of minoxidil on human breast cancer cells: Combination with ranolazine. Clin. Exp. Metastasis 2022, 39, 679–689. [CrossRef]
  139. Wang, Y.; Jiang, H.; Wang, W.; Dai, J.; Tang, M.; Wei, Y.; Kuang, H.; Xu, G.; et al. Fenofibrate-induced mitochondrial dysfunction and metabolic reprogramming reversal: The anti-tumor effects in gastric carcinoma cells mediated by the PPAR pathway. Am. J. Transl. Res. 2020, 12, 428. [PubMed] [PubMed Central]
  140. Pasello, G.; Urso, L.; Conte, P.; Favaretto, A. Effects of sulfonylureas on tumor growth: A review of the literature. Oncol. 2013, 18, 1118–1125. [CrossRef]
  141. Zúñiga, L.; Cayo, A.; González, W.; Vilos, C.; Zúñiga, R. Potassium channels as a target for cancer therapy: Current perspectives. OncoTargets Ther. 2022, 15, 783. [CrossRef] [PubMed] [PubMed Central]
  142. 144.Correia, A.S.; Gärtner, F.; Vale, N. Drug combination and repurposing for cancer therapy: The example of breast cancer. Heliyon 2021, 7, e05948. [CrossRef] [PubMed]
  143. Kasar GN, Rasal PB, Patil CD, Mahajan SK, & Upaganlawar AB. Proteostasis in aging: mechanistic insights and therapeutic opportunities. Aging Pathobiol Ther, 2025, 7(1): 25-43. doi: 10.31491/ APT.2025.03.165
  144. Rasal PB, Kasar GN, Pagar DS, Upaganlawar AB, & Mahajan SK. Resilience in the depths: anemones as models for aging and regeneration research. Aging Pathobiol Ther, 2025, 7(3): 144-155. doi: 10.31491/APT.2025.09.179
  145. Surana, K., Jadhav, S., Khairnar, R., Ahire, E., & Kasar, G. (2025). In silico prediction of some indole derivatives against virb8 from Brucella suis and cyanobacterial membrane-bound manganese superoxide dismutase. Prospects in Pharmaceutical Sciences, 23(4), 37–46. https://doi.org/10.56782/pps.412
  146. Pradnya Jadhav, Gaurav Kasar, Pooja Rasal, Manoj Mahajan, Aman Upaganlawar, Chandrashekhar Upasani. Virgin Coconut Oil Solubilised Curcumin Protects Nephropathy in Diabetic Rats. J. Pharm. Res. 2023;22(2):87–92. https://doi.org/10.18579/jopcr/v22.2.23.22
  147. Vaibhavi Pagar, Gaurav Kasar*, Dipti Chavan, Dr. Chandrashekhar Patil, Dr. Sunil Mahajan, Zebrafish Model in Pharmaceutical Research: A Review, Int. J. Sci. R. Tech., 2025, 2 (5), 535-541. https://doi.org/10.5281/zenodo.15507701
  148. Wang, X.; Zhao, J.; Marostica, E.; Yuan, W.; Jin, J.; Zhang, J.; Li, R.; Tang, H.; Wang, K.; Li, Y.; et al. A pathology foundation model for cancer diagnosis and prognosis prediction. Nature 2024, 634, 970–978. [CrossRef]
  149. Parvathaneni, V.; Elbatanony, R.S.; Goyal, M.; Chavan, T.; Vega, N.; Kolluru, S.; Muth, A.; Gupta, V.; Kunda, N.K. Repurposing bedaquiline for effective non-small cell lung cancer (NSCLC) therapy as inhalable cyclodextrin-based molecular inclusion complexes. Int. J. Mol. Sci. 2021, 22, 4783. [CrossRef
  150. Fiorillo, M.; Lamb, R.; Tanowitz, H.B.; Cappello, A.R.; Martinez-Outschoorn, U.E.; Sotgia, F.; Lisanti, M.P. Bedaquiline, an FDA-approved antibiotic, inhibits mitochondrial function and potently blocks the proliferative expansion of stem-like cancer cells (CSCs). Aging 2016, 8, 1593. [CrossRef] [PubMed]
  151. Fu, L.; Jin, W.; Zhang, J.; Zhu, L.; Lu, J.; Zhen, Y.; Zhang, L.; Ouyang, L.; Liu, B.; Yu, H. Repurposing non-oncology small-molecule drugs to improve cancer therapy: Current situation and future directions. Acta Pharm. Sin. B 2022, 12, 532–557. [CrossRef]
  152. Li, J.; Qin, Y.; Zhao, C.; Zhang, Z.; Zhou, Z. Tetracycline antibiotics: Potential anticancer drugs. Eur. J. Pharmacol. 2023, 956, 175949. [CrossRef]
  153. Dong, Z.; Abbas, M.N.; Kausar, S.; Yang, J.; Li, L.; Tan, L.; Cui, H. Biological functions and molecular mechanisms of antibiotic tigecycline in the treatment of cancers. Int. J. Mol. Sci. 2019, 20, 3577. [CrossRef]
  154. Pourgholami, M.H.; Mekkawy, A.H.; Badar, S.; Morris, D.L. Minocycline inhibits growth of epithelial ovarian cancer. Gynecol. Oncol. 2012, 125, 433–440. [CrossRef] [PubMed]
  155. Afshari, A.R.; Mollazadeh, H.; Sahebkar, A. Minocycline in treating glioblastoma multiforme: Far beyond a conventional antibiotic. J. Oncol. 2020, 2020, 8659802. [CrossRef]
  156. Reed, G.A.; Schiller, G.J.; Kambhampati, S.; Tallman, M.S.; Douer, D.; Minden, M.D.; Yee, K.W.; Gupta, V.; Brandwein, J.; Jitkova, Y.; et al. A Phase 1 study of intravenous infusions of tigecycline in patients with acute myeloid leukemia. Cancer Med. 2016, 5, 3031–3040. [CrossRef
  157. Novella, P.; Salvatore, P.; Iula, D.V.; Catania, M.R.; Chiurazzi, F.; Raimondo, M.; Beneduce, G.; Cerchione, C.; Della Pepa, R.; Giordano, C.; et al. Tigecycline-Based Front-Line Antibiotic Therapy Significantly Decreases Mortality Among Patients with Neutropenic Enterocolitis Following Cytarabine-Containing Chemotherapy for the Remission Induction of Acute Myeloid Leukemia. Blood 2016, 128, 3550. [CrossRef]
  158. Aminzadeh-Gohari, S.; Weber, D.D.; Vidali, S.; Catalano, L.; Kofler, B.; Feichtinger, R.G. From old to new—Repurposing drugs to target mitochondrial energy metabolism in cancer. Semin. Cell Dev. Biol. 2020, 98, 211–223. [CrossRef] [PubMed]
  159. Wang, S.-F.; Tseng, L.-M.; Lee, H.-C. Role of mitochondrial alterations in human cancer progression and cancer immunity. J. Biomed. Sci. 2023, 30, 61. [CrossRef]
  160. Yang, Y.; An, Y.; Ren, M.; Wang, H.; Bai, J.; Du, W.; Kong, D. The mechanisms of action of mitochondrial targeting agents in cancer: Inhibiting oxidative phosphorylation and inducing apoptosis. Front. Pharmacol. 2023, 14, 1243613. [CrossRef]
  161. Bailly, C.; Vergoten, G. A new horizon for the old antibacterial drug clofoctol. Drug Discov. Today 2021, 26, 1302–1310. [CrossRef]
  162. Wang, M.; Shim, J.S.; Li, R.; Dang, Y.; He, Q.; Das, M.; O Liu, J. Identification of an old antibiotic clofoctol as a novel activator of unfolded protein response pathways and an inhibitor of prostate cancer. Br. J. Pharmacol. 2014, 171, 4478–4489. [CrossRef] [PubMed]
  163. van der Zanden, S.Y.; Qiao, X.; Neefjes, J. New insights into the activities and toxicities of the old anticancer drug doxorubicin. FEBS J. 2021, 288, 6095–6111. [CrossRef]
  164. Shandilya, M.; Sharma, S.; Das, P.P.; Charak, S. Molecular-level understanding of the anticancer action mechanism of anthracy clines. Adv. Precis. Med. Oncol. 2020. [CrossRef]
  165. Mukai, H.; Kogawa, T.; Matsubara, N.; Naito, Y.; Sasaki, M.; Hosono, A. A first-in-human Phase 1 study of epirubicin-conjugated polymer micelles (K-912/NC-6300) in patients with advanced or recurrent solid tumors. Investig. New Drugs 2017, 35, 307–314. [CrossRef]
  166. Pourgholami, M.H.; Mekkawy, A.H.; Badar, S.; Morris, D.L. Minocycline inhibits growth of epithelial ovarian cancer. Gynecol. Oncol. 2012, 125, 433–440. [CrossRef] [PubMed]
  167. Reed, G.A.; Schiller, G.J.; Kambhampati, S.; Tallman, M.S.; Douer, D.; Minden, M.D.; Yee, K.W.; Gupta, V.; Brandwein, J.; Jitkova, Y.; et al. A Phase 1 study of intravenous infusions of tigecycline in patients with acute myeloid leukemia. Cancer Med. 2016, 5, 3031–3040. [CrossRef]
  168. Novella, P.; Salvatore, P.; Iula, D.V.; Catania, M.R.; Chiurazzi, F.; Raimondo, M.; Beneduce, G.; Cerchione, C.; Della Pepa, R.; Giordano, C.; et al. Tigecycline-Based Front-Line Antibiotic Therapy Significantly Decreases Mortality Among Patients with Neutropenic Enterocolitis Following Cytarabine-Containing Chemotherapy for the Remission Induction of Acute Myeloid Leukemia. Blood 2016, 128, 3550. [CrossRef]
  169. 166.Wang, J.; Sun, D.; Huang, L.; Wang, S.; Jin, Y. Targeting reactive oxygen species capacity of tumor cells with repurposed drug as an anticancer therapy. Oxidative Med. Cell. Longev. 2021, 2021, 8532940. [CrossRef]
  170. Yadav, V.; Talwar, P. Repositioning of fluoroquinolones from antibiotic to anticancer agents: An underestimated truth. Biomed. Pharmacother. 2019, 111, 934–946. [CrossRef] [PubMed]
  171. Nowakowska, J.; Radomska, D.; Czarnomysy, R.; Marciniec, K. Recent Development of Fluoroquinolone Derivatives as Anticancer Agents. Molecules 2024, 29, 3538. [CrossRef] [PubMed] [PubMed Central]
  172. AbuBaih, R.H.; Fawzy, M.A.; Nazmy, M.H. The prospective potential of fluoroquinolones as anticancer agents. J. Mod. Res. 2023, 5, 4–10. [CrossRef]
  173. Zhou, W.; Wang, H.; Yang, Y.; Chen, Z.-S.; Zou, C.; Zhang, J. Chloroquine against malaria, cancers and viral diseases. Drug Discov. Today 2020, 25, 2012–2022. [CrossRef] [PubMed]
  174. Liu, Y.; Meng, Y.; Zhang, J.; Gu, L.; Shen, S.; Zhu, Y.; Wang, J. Pharmacology Progresses and Applications of Chloroquine in Cancer Therapy. Int. J. Nanomed. 2024, 6777–6809. [CrossRef] [PubMed]
  175. Mauthe, M.; Orhon, I.; Rocchi, C.; Zhou, X.; Luhr, M.; Hijlkema, K.-J.; Coppes, R.P.; Engedal, N.; Mari, M.; Reggiori, F. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 2018, 14, 1435–1455. [CrossRef] [PubMed]
  176. Vlachos, N.; Lampros, M.; Voulgaris, S.; Alexiou, G.A. Repurposing antipsychotics for cancer treatment. Biomedicines 2021, 9, 1785. [CrossRef] [PubMed]
  177. Lianos, G.D.; Alexiou, G.A.; Rausei, S.; Galani, V.; Mitsis, M.; Kyritsis, A.P. Repurposing antipsychotic drugs for cancer treatment: Current evidence and future perspectives. Expert Rev. Anticancer. Ther. 2022, 22, 131–134. [CrossRef]
  178. Moura, C.; Vale, N. The role of dopamine in repurposing drugs for oncology. Biomedicines 2023, 11, 1917. [CrossRef]
  179. Vasconcelos, M.H.; Palmeira, A.; Sousa, S.M.; Xavier, C.P.R. Repurposing some of the Well-Known Non-Steroid Anti-Inflammatory Drugs (NSAIDs) for Cancer Treatment. Curr. Top. Med. Chem. 2023, 23, 1171–1195. [CrossRef]
  180. Ozleyen, A.; Yilmaz, Y.B.; Donmez, S.; Atalay, H.N.; Antika, G.; Tumer, T.B. Looking at NSAIDs from a historical perspective and their current status in drug repurposing for cancer treatment and prevention. J. Cancer Res. Clin. Oncol. 2023, 149, 2095–2113. [CrossRef]
  181. Thiruchenthooran, V.; Sánchez-López, E.; Gliszczy´nska, A. Perspectives of the application of non-steroidal anti-inflammatory drugs in cancer therapy: Attempts to overcome their unfavorable side effects. Cancers 2023, 15, 475. [CrossRef] [PubMed]
  182. Bin Joo, Y.; Jung, S.M.; Park, Y.-J.; Kim, K.-J.; Park, K.-S. Use of disease-modifying antirheumatic drugs after cancer diagnosis in rheumatoid arthritis patients. J. Rheum. Dis. 2022, 29, 162–170. [CrossRef]
  183. De Sousa-Coelho, A.L.; Fraqueza, G.; Aureliano, M. Repurposing Therapeutic Drugs Complexed to Vanadium in Cancer. Pharmaceuticals 2023, 17, 12. [CrossRef] [PubMed] [PubMed Central]
  184. Calip, G.S.; Patel, P.R.; Sweiss, K.; Wu, Z.; Zhou, J.; Asfaw, A.A.; Adimadhyam, S.; Lee, T.A.; Chiu, B.C. Targets of biologic disease-modifying antirheumatic drugs and risk of multiple myeloma. Int. J. Cancer 2020, 147, 1300–1305. [CrossRef] [PubMed]
  185. Aroosa, M.; Malik, J.A.; Ahmed, S.; Bender, O.; Ahemad, N.; Anwar, S. The evidence for repurposing anti-epileptic drugs to target cancer. Mol. Biol. Rep. 2023, 50, 7667–7680. [CrossRef] [PubMed]
  186. Sulsenti, R.; Frossi, B.; Bongiovanni, L.; Cancila, V.; Ostano, P.; Fischetti, I.; Enriquez, C.; Guana, F.; Chiorino, G.; Tripodo, C.; et al. Repurposing of the antiepileptic drug levetiracetam to restrain neuroendocrine prostate cancer and inhibit mast cell support to adenocarcinoma. Front. Immunol. 2021, 12, 622001. [CrossRef] [PubMed]
  187. Malla, R.; Viswanathan, S.; Makena, S.; Kapoor, S.; Verma, D.; Raju, A.A.; Dunna, M.; Muniraj, N. Revitalizing Cancer Treatment: Exploring the Role of Drug Repurposing. Cancers 2024, 16, 1463. [CrossRef]
  188. Rizzo, A.; Donzelli, S.; Girgenti, V.; Sacconi, A.; Vasco, C.; Salmaggi, A.; Blandino, G.; Maschio, M.; Ciusani, E. In vitro antineoplastic effects of brivaracetam and lacosamide on human glioma cells. J. Exp. Clin. Cancer Res. 2017, 36, 1–13. [CrossRef]
  189. Moutal, A.; Villa, L.S.; Yeon, S.K.; Householder, K.T.; Park, K.D.; Sirianni, R.W.; Khanna, R. CRMP2 phosphorylation drives glioblastoma cell proliferation. Mol. Neurobiol. 2018, 55, 4403–4416. [CrossRef]
  190. Morales, X.; Peláez, R.; Garasa, S.; de Solórzano, C.O.; Rouzaut, A. CRMP2 as a candidate target to interfere with lung cancer cell migration. Biomolecules 2021, 11, 1533. [CrossRef]
  191. Costa, B.; Vale, N. Understanding Lamotrigine’s role in the CNS and possible future evolution. Int. J. Mol. Sci. 2023, 24, 6050. [CrossRef]
  192. Kim, K.J.; Jeun, S.H.; Sung, K.-W. Lamotrigine, an antiepileptic drug, inhibits 5-HT3 receptor currents in NCB-20 neuroblastoma cells. Korean J. Physiol. Pharmacol. Off. J. Korean Physiol. Soc. Korean Soc. Pharmacol. 2017, 21, 169. [CrossRef]
  193. Zhou, D.; Wang, L.; Cui, Q.; Iftikhar, R.; Xia, Y.; Xu, P. Repositioning lidocaine as an anticancer drug: The role beyond anesthesia. Front. Cell Dev. Biol. 2020, 8, 565. [CrossRef]
  194. Wu, K.-C.; Liao, K.-S.; Yeh, L.-R.; Wang, Y.-K. Drug repurposing: The mechanisms and signaling pathways of anticancer effects of anesthetics. Biomedicines 2022, 10, 1589. [CrossRef] [PubMed]
  195. Ioakeim-Skoufa I, Tobajas-Ramos N, Menditto E, Aza-Pascual-Salcedo M, Gimeno-Miguel A, Orlando V, González-Rubio F, Fanlo-Villacampa A, Lasala-Aza C, Ostasz E, Vicente-Romero J. Drug Repurposing in Oncology: A Systematic Review of Randomized Controlled Clinical Trials. Cancers (Basel). 2023 May 30;15(11):2972. doi: 10.3390/cancers15112972. PMID: 37296934; PMCID: PMC10251882.
  196. Al Khzem, A.H.; Gomaa, M.S.; Alturki, M.S.; Tawfeeq, N.; Sarafroz, M.; Alonaizi, S.M.; Al Faran, A.; Alrumaihi, L.A.; Alansari, F.A.; Alghamdi, A.A. Drug Repurposing for Cancer Treatment: A Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 12441. https://doi.org/10.3390/ijms252212441
  197. Robert Wieder, Nabil Adam, Drug repositioning for cancer in the era of AI, big omics, and real-world data, Critical Reviews in Oncology/Hematology, Volume 175, 2022, 103730, ISSN 1040-8428, https://doi.org/10.1016/j.critrevonc.2022.103730.
  198. 195.Kulkarni VS, Alagarsamy V, Solomon VR, Jose PA, Murugesan S. Drug Repurposing: An Effective Tool in Modern Drug Discovery. Russ J Bioorg Chem. 2023;49(2):157-166. doi: 10.1134/S1068162023020139. Epub 2023 Feb 21. PMID: 36852389; PMCID: PMC9945820.
  199. 21.March-Vila E., Pinzi L., Sturm N., Tinivella A., Engkvist O., Chen H., Rastelli G. Front. Pharmacol. 2017; 8:298. doi: 10.3389/fphar.2017.00298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. 4.Jin G., Wong S.T.C. Drug Discovery Today. 2014; 19:637–644. doi: 10.1016/j.drudis.2013.11.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. 198.Gonzalez-Fierro, A. & Dueñas-González, A. Drug repurposing for cancer therapy, easier said than done. Semin. Cancer Biol. 68, 123–131 (2021).
  202. 199.Breckenridge, A. & Jacob, R. Overcoming the legal and regulatory barriers to drug repurposing. Nat. Rev. Drug Discov. 18, 1–2 (2019).
  203. Uttam T, Subhashree S, Madhu P, et al. Drug repurposing approach to fight COVID-19. Pharmacol Rep. 2020;72(6):1479–1508.
  204. Yu J, Putcha P, Silva JM. Recovering drug-induced apoptosis subnetwork from connectivity map data. Biomed Res Int. 2015; 2015:708563.
  205. Lee SY, Song MY, Kim D, et al. A proteotranscriptomic-based computational drug-repositioning method for Alzheimer’s disease. Front Pharmacol. 2020; 10:1653.

Photo
Tejswini Gaikwad
Corresponding author

Department of Pharmacology, JES’s SND College of Pharmacy, Babhulgaon (Yeola), India

Photo
Rashee Shahu
Co-author

Department of Pharmacology, JES’s SND College of Pharmacy, Babhulgaon (Yeola), India

Photo
Sunita Kode
Co-author

Department of Pharmacology, JES’s SND College of Pharmacy, Babhulgaon (Yeola), India

Photo
Shivcharan Kamble
Co-author

Department of Pharmacology, JES’s SND College of Pharmacy, Babhulgaon (Yeola), India

Photo
Pooja Rasal
Co-author

Department of Pharmacology, JES’s SND College of Pharmacy, Babhulgaon (Yeola), India

Tejswini Gaikwad*, Rashee Shahu, Sunita Kode, Shivcharan Kamble, Pooja Rasal, Reinventing Medicines: Drug Repurposing as A New Frontier in Cancer Therapy, Int. J. Sci. R. Tech., 2025, 2 (12), 437-456. https://doi.org/10.5281/zenodo.18064187

More related articles
Smart Polymers is Controlled Drug Release...
Shivaji Katade , Nayan Anil Sardar, Ram Baban Ingle, ...
A Review on the Role of Transdermal Drug Delivery:...
Yash Tambe, Vaishali Pagar, Harshal Pagar, Vaibhav Thakare, ...
Emerging Multidrug-Resistant Fungal Pathogens: Epi...
Haider Abbas, Amulya Singh, Arpit Maurya , Kavya Singh, Dr. Anup...
Characterizing the Role of Suzetrigine Drug as A Non-Opioid Analgesic for Acute ...
Shraddha Ghadage, Snehal Kadbhane, Dr. Vijaykumar kale, Shweta Mahajan, Shweta Dandawthe, ...
A study on Quantum Computing Could Revolutionize Drug Discovery...
Yogesh C., Manoj S. G., S. Aruna, Dr. D. P. Sivasaktibalan, ...
Related Articles
A Review Article On: Gastro-Retentive Drug Delivery System (GRDDS)...
Achal Andhale, Sakshi Kadam, Mansi Jamdhade, Rutuja Jamdhade, Jyoti Javade, ...
Smart Polymers is Controlled Drug Release...
Shivaji Katade , Nayan Anil Sardar, Ram Baban Ingle, ...
More related articles
Smart Polymers is Controlled Drug Release...
Shivaji Katade , Nayan Anil Sardar, Ram Baban Ingle, ...
A Review on the Role of Transdermal Drug Delivery: Microneedles, Patches, and Na...
Yash Tambe, Vaishali Pagar, Harshal Pagar, Vaibhav Thakare, ...
Emerging Multidrug-Resistant Fungal Pathogens: Epidemiology, Mechanisms, and Nov...
Haider Abbas, Amulya Singh, Arpit Maurya , Kavya Singh, Dr. Anupam Singh, ...
Smart Polymers is Controlled Drug Release...
Shivaji Katade , Nayan Anil Sardar, Ram Baban Ingle, ...
A Review on the Role of Transdermal Drug Delivery: Microneedles, Patches, and Na...
Yash Tambe, Vaishali Pagar, Harshal Pagar, Vaibhav Thakare, ...
Emerging Multidrug-Resistant Fungal Pathogens: Epidemiology, Mechanisms, and Nov...
Haider Abbas, Amulya Singh, Arpit Maurya , Kavya Singh, Dr. Anupam Singh, ...