View Article

  • Development of Chromatographic Method for The Simultaneous Estimation of Solifenacin and Mirabegron in Combination Tablet Dosage form

  • Faculty of Pharmacy, Oriental University, Indore

Abstract

A simple, accurate, and precise reverse-phase high-performance liquid chromatographic (RP-HPLC) method was developed and validated for the simultaneous estimation of Solifenacin Succinate and Mirabegron in a combined tablet dosage form. The method employed a C18 column with a mobile phase consisting of acetonitrile and phosphate buffer (pH adjusted to 3.5 with orthophosphoric acid) in a 60:40 v/v ratio. The flow rate was maintained at 1.0 mL/min and detection was carried out at 220 nm. The retention times for Solifenacin and Mirabegron were found to be approximately 3.8 and 6.2 minutes, respectively. The method was validated as per ICH guidelines and showed good linearity (r² > 0.999), precision (RSD < 2%), accuracy (recoveries within 98-102%), and robustness. This method can be successfully applied for routine quality control and stability studies of Solifenacin and Mirabegron in combined pharmaceutical formulations.

Keywords

Cassia alata, Anthelmintic properties, Herbal medicine, Physicochemical constituent, Pharmacological activity

Introduction

Overactive bladder (OAB) is a prevalent urological disorder treated with a combination of muscarinic receptor antagonists and β3-adrenoceptor agonists. Solifenacin Succinate, a selective M3 receptor antagonist, and Mirabegron, a β3-adrenergic agonist, are widely used in combination therapy for their synergistic efficacy in reducing urgency and frequency symptoms1. Combined dosage forms of these drugs are commercially available, necessitating the development of a robust and reliable analytical method for their simultaneous estimation2. High-performance liquid chromatography (HPLC) remains the preferred technique for the quantification of multiple drug components in pharmaceutical preparations due to its high accuracy, selectivity, and reproducibility3. Despite the availability of individual methods for Solifenacin and Mirabegron, limited studies have been reported for their simultaneous estimation4. Hence, the present study aims to develop and validate a simple RP-HPLC method for their concurrent analysis in combination tablets5.

MATERIALS AND METHODS

1. Procurement of Drug Samples and Chemicals:

Pure samples of Mirabegron and Solifenacin were sourced from IPCA Lab, Ratlam, M.P., India. The tablets, containing 05 mg SOL and 50 mg MIB per dose, were bought from a local market. Methanol (AR and HPLC grade) and acetonitrile (HPLC grade) were obtained from a local supplier, while HPLC-grade water was prepared at the college.

2. Identification and Characterisation of Drugs

2.1 Solubility

The solubility of all three drugs was determined by dissolving them in various solvents following IP guidelines.

2.2 Identification of drugs by their Melting Point

A digital melting point apparatus was used to determine the drug's melting point.

2.3 Identification of Drugs by IR Spectra

A drift of the drug and KBr (AR grade) was prepared and scanned between the range of 400- 4000cm-1

3.  RP-HPLC Method development for simultaneous estimation of Mirabegron (MIB) and Solifenacin (SOL).

3.1 Instrumentation

3.1.1 Shimadzu LC-IOAT HPLC Instrument

The LC system comprises a Shimadzu LC 10AT VP pump and a Rheodyne 7725 i universal loop injector with a 20 mL injection capacity. It also features a photodiode array (PDA) detector and an SPD-10 AVP UV-visible detector. The separation is performed using a Phenomenex Luna C18 column (5 mm x 50 cm x 4.6 mm i.d.). The workstation is a personal computer running CLASS-VP software from Shimadzu (Tokyo, Japan). The reservoir's volume capacity was greater than 500ml, and the mobile phase velocity was between 1 and 2 mL/min.

3.1.2 Binary pump

This is primarily beneficial on gradient runs and features with automatic changing of solvent composition- A pump supplies constant mass flow or more solvents to the arrangement (the previous one can save more components in a hypothetical arrangement)8. The binary pump introduces a cleaned and degassed solvent to a proportioning value. The series is built of a two-valve binary pump7. Solvents are measured at a percentage (chemist specified) and combined inside the pump head, where a piston of the pump meters the flow of the mixture to an outlet tube10. The outlet tubing from the pump routes the solvent flow to a sampler12.

3.1.3 Column

The column is typically a stainless-steel tube filled with silane, octadecylsilane, or octadecylsilane-coated silica gel with a mean diameter of 3, 5, or 10 mm.

3.1.4 Photodiode array detector

The SPD-10 AVP UV-Visible detector is an advanced UV detector that monitors the entire UV spectrum simultaneously using an array of photodiodes. It detects light dispersed by a fixed monochromator across a wavelength range, providing 1nm resolution. This feature is especially useful for analyzing complex mixtures with a variety of compounds that have very different absorbance characteristics or when chromatographic peaks overlap but can be distinguished through UV absorbance14. The detector's ability to capture the full spectrum of UV absorption at a peak helps in identifying unknown substances.

3.2 Working Protocol

Product          (Label claim MIB-50 mg SOL-05 mg)

Average weight           78.5 mg.

The standard samples of Mirabegron and Solifenacin obtained for testing were evaluated for purity, with results ranging from 98% to 102%. Pure Mirabegron and Solifenacin samples were sourced from IPCA Laboratories Ltd, Ratlam, India. All chemicals and reagents used were of HPLC grade and purchased from Merck, Mumbai, India.

3.2.1 Standard stock solution Preparation

The equivalent of 10 mg each of Mirabegron and Solifenacin was accurately weighed in 100 ml volumetric flasks separately and dissolved in 25 ml of methanol to prepare standard stock solutions. After the immediate dissolution, the volume was adjusted to the mark with solvent. These standard stock solutions were observed to contain 100 mg/ml of Mirabegron and Solifenacin

3.2.2 Selection of sampling wavelengths

10 mg of Mirabegron and Solifenacin were carefully weighed separately in 100 ml volumetric flasks. After they dissolved completely, the volume was adjusted to the mark with solvent. The resulting standard stock solutions contained 100 mg/ml of Mirabegron and Solifenacin. Working standard solutions with a 5 mg/ml concentration were prepared by diluting the stock solutions appropriately (Donald). mg//ml of each drug was scanned in the range 200- 400 nm in the spectrum mode at the low scan speed to obtain the overlain spectra of these drugs.

3.2.3 Selection of mobile phase and optimization of method -

Different column chemistries, solvent types, solvent strengths (vol. fraction of organic solvents in the mobile phase, pH of the buffer), detection wavelengths, and flow rates were tested to identify the chromatographic conditions that offer the best separation. The mobile phase conditions were fine-tuned to ensure that the components do not interfere with the solvent and excipients. Additional criteria considered include the analysis time. The k values of eluted compounds were also evaluated to ensure optimal separation. Peaks, assay sensitivity, solvent noise, and the use of the same solvent system for extracting drugs from formulation matrices during drug analysis were also considered17. The same aqueous mobile phases containing methanol, acetonitrile and water were also evaluated14. The three aforementioned solvents were found to give the best results. The technique was further optimized by varying the mobile phase concentration, and the results are then presented15. The study found that the highest resolution regarding peak symmetry, resolution run time and other parameters was separated by a 55:30:15 (v/v) ratio mixture of methanol: acetonitrile: water as mobile phase. It determines flow rate by evaluating the impact of various pressures on peak area and resolution, which was found to be a 0.6 ml/min optimum18.

3.3 Optimized chromatographic conditions

The optimized chromatographic conditions are reported in Table 1.

Table 1: Optimised chromatographic conditions

Variable

Condition

Column

 

Dimension.

50 mm x 4.60 mm

Particle Size

5?

Bonded Phase

Octadecylsilane (C18)

Mobile Phase

 

Methanol:

55

Acetonitrile:

30

Water

15

Mobile phase Flow rate

1 ml/min

Run time

10 min

Temperature

Ambient

4.1 Assay of SOL and MIB individually and in combination

4..1.1 Standard stock solution Preparation

Methanol was used as a common solvent for these drugs. 05 mg each of SOL and MIB were accurately weighted and then dissolved in 50 ml of solvent to achieve a solution of 1000mg/ml

4.1.2 Standard solution Preparation for the linearity study

From the respective standard stock solution of 1000 mg/ml, different dilutions were made for each individual drug, with concentrations given in Tables 5.6 and 5.7 along with the respective solvent. Afterward, 20 ml of these solutions were injected into the LC system with a Hamilton syringe. The chromatograms were then recorded at 239 nm.

4..1.3 Analysis of mixed standard

20mL solutions of these different mixed standard solutions of known concentration from the standard stock solutions of 1000 mg/ml of the drugs were injected by Hamilton syringe into the LC system, respectively, and then their chromatograms were recorded. After that, we calculated the concentration of individual drugs by extrapolating the value of the area from their calibration curves, respectively.

5.1.2 Analysis of the tablet

Moreover, the individual standard analysis's satisfactory result was applied to the quantitative study of all the commercially available tablet drugs. For the stock solution of tablet dosage form, 20 tablets were weighed, and the average weight was obtained. And then they were ground to get fine powder. Then, powder equivalents to 10 mg of SOL (from the respective quantity of MIB) were taken into the standard 50ml volumetric flask and dissolved in 30ml of methanol with vigorous shaking for 5- 10 minutes. The supernatant liquid was transferred to a 100 mL volumetric flask through a Whatman #41 filter paper. The obtained residue was washed twice with solvent, and the combined filtrate was made up to the 100ml mark. 10 ml of the above solution was then diluted to 100 ml with solvent. The sample solutions of the required concentrations of all three drugs were prepared in six replicates. An aliquot of 20uL of each replicate was injected into the system, and their chromatograms were recorded.

5.2 Validation of Developed Method

5.2.1 Linearity

The linearity of analytical procedures is the ability (within the limits) to obtain test results directly proportional to the amount of analyte in the sample. Five different concentrations were analysed, and for each concentration, the area was measured three times. The mean area was taken, which was incorporated into the calibration plot. We determined the regression equation, correlation coefficient, and standard calibration curve of the drug.

5.2.2 Accuracy (Recovery study)

Per ICH guidelines, a recovery study was performed to check the accuracy of the developed method. To analyse a purified chromatographed sample, standard solutions of all the drugs corresponding to 80, 100, and 120% of their drug content were added. The recovery study was then repeated.

5.2.3 Repeatability Precision

The repeatability was done for five replicates at five concentrations in the linearity range for SOL and for MIB, representing the precision under the same functioning condition over short intervals of time.

5.2.4 Intermediate precision

Precision was studied for intra-day and inter-day precision. Inter-day precision is the precision study carried out on different days, and intraday precision is the precision study carried out on the same day at various time intervals by the same solution. Here, six replicate samples of solutions were prepared from the stock solution. The drugs were determined for an intra-day precision study at one hour, three times on the same day. Method of Determining the Amount of Drug Contents In the first, second, and third inter-day studies, the amount of drug content was calculated on three different days.

 RESULTS

Solubility of Selected Drugs

Table 2: Solubility of drug in different solvents

Solvent

Mirabegron

Solifenacin

Water

Insoluble

Freely soluble

Methanol/ Ethanol

Soluble

Soluble

Acetonitrile

Slightly soluble

Sparingly soluble

Ether

Soluble

Sparingly soluble

Dimethyl sulphoxide

Freely soluble

Practically insoluble

Melting points of Selected Drugs

Table 3: Melting Point of Drugs

Drug Name

Melting Point

Standard Value

Mirabegron

139°C

138-140°C

Solifenacin

147°C

146-147°C

6.1 IR Spectra of the Selected Drugs

6.1.1 Solifenacin

The IR spectra of pure API Solifenacin are given as under in Figure, with wavenumber interpretations enlisted in Table

Fig. 4: FT-IR Spectra of Solifenacin

IR interpretation of Solifenacin

Group

Observed Frequency (cm -1)

Standard Range (cm-1)

C=O str

1,655.12 cm−1

1650-1780

O-H str

2,925.90 cm−1

2700- 3800

6.1.1 Mirabegron

The IR spectra of pure API Solifenacin are given as under in Figure 6.2, with wavenumber interpretations enlisted in Table 6.4

Fig. 5: FT-IR Spectra of Mirabegron

: IR interpretation of Mirabegron

Group

Observed Frequency (cm -1)

Standard Range (cm-1)

O–H s at c ring

3324.77

3300-3010

C=O s at b ring

1667.97

1744-1650

NH2 sc

1601.51

1661-1550

Overlain spectra of Selected Drugs

The UV overlaying spectra of both the selected drugs was measured. It was obtained as shown in figure 6.3

Fig 6.3: Overlain spectra of Mirabegron and Solifenacin

2.1 Calibration plots of both drugs - individually and in combination

The chromatogram clearly showed that SOL relented at time 4.918 min (fig. 6 .4) and MIB at 3.256 min (fig. 6.6). The area was measured, and the calibration curve was drawn between the peak area and their concentrations. The calibration curve clearly showed that SOL and MIB have linearity ranges of 5-70 mg/ml, respectively (fig. 6.5 & 6.7).

Table 6.5: Linearity of SOLIFENACIN

 

Conc.

Peak Area

 

Mean + SD

Replica 1

Replica 2

Replica 3

Replica 4

Replica 5

Replica 6

5

1006076

1017095

999913

1010687

1024862

1031318

1014992 + 11779.49

10

2064508

2055822

2058860

2049875

2078373

2066235

2062279 + 9867.805

15

3030964

3031194

3036465

3028494

3026467

3048035

3033603 + 7825.547

 

Sample Size

20?l

Detection wavelength

239 nm

Retention time MIB

SOL

3.25+ 0.2 min

4.91+ 0.4 min

Fig 6.4: Chromatogram of SOL

Fig 6.5: SOL Calibration curve

Table 6 : Linearity of MIB

Conc.

Peak Area

Mean + S.D.

 

Replica 1

Replica 2

Replica 3

Replica 4

Replica 5

Replica 6

 

 

5

1278318

1251697

1261676

1256020

1286252

1277016

1268497 + 3918.35

 

10

2430401

2456557

2423353

2472281

2406927

2445955

2439246+23712.02

 

15

3532245

3531128

3591348

3572419

3519402

3548519

3549176+27633.15

 

20

4696148

4681403

4693654

4684428

4660451

4666926

4680501+14285.02

 

25

5953013

5938716

5973642

5992404

5988564

5981578

5971319+21216.58

 

Fig 6.6: Chromatogram of MIB

Fig 6.7: MIB Calibration curve

Table 7: Analysis of mixed standard

 

S. No.

SOL

MIB

Amount Present

Amount Found

Amount Present

Amount Found

(?g/ml)

(%)

(?g/ml)

(%)

1

5

4.99

99.8

5

5.10

101.02

2

10

10.02

100.02

10

9.99

99.95

3

15

14.94

99.63

15

14.54

96.93

4

20

19.49

97.45

20

19.99

101.1

5

25

25.30

101.2

25

25.25

102.1

Mean

-

-

99.62

-

-

100.3

S.D.

-

-

1.36

-

-

1.81

%COV

-

-

1.37

-

-

1.80

S.E.

-

-

0.60

-

-

0.73

7.1 Evaluation of Tablet formulation

The chromatograms showed that SOL and MIB were eluted at 4.918 and 3.256, respectively. Using the area, the concentrations of these drugs were referred to their calibration curves. The results and their statistical results are shown in Table 6.8

Chromatogram of MIB and SOL in tablet sample

Table 8: Result analysis and statistical validation of Tablet

 

S. No.

SOL

MIB

Amount Present

Amount Found

Amount Present

Amount Found

(?g/ml)

(%)

(?g/ml)

(%)

1

10

10.11

101.1

10

9.97

99.73

2

10

10.03

100.3

10

10.06

100.6

3

10

9.98

99.8

10

9.96

99.63

4

10

9.98

99.8

10

10.01

100.1

5

10

10.03

100.3

10

9.98

99.86

6

10

9.93

99.3

10

9.98

99.84

Mean

-

10.01

100.1

-

9.993

99.93

+ S.D.

-

-

0.616

-

-

0.351

%CV

-

-

0.62

-

-

0.35

S.E.

-

-

0.252

-

-

0.143

Validation of Developed Method

Linearity

Figures 6.10 and 6.12 show the drug's standard calibration curve. Using the mean of the The response ratio (response factor) is calculated based on the observed AUC and the corresponding concentration value. calculated by dividing the AUC by the respective concentration.

Table 9: Linearity of SOL

 

Conc.

Peak Area

 

Mean + S.D.

Replica

I

Replica

II

Replica

III

Replica

IV

Replica

V

Replica

VI

05

1006075

1017094

999913

1010687

1024862

1031318

1014992 + 11779.49

10

2064508

2055822

2058860

2049875

2078375

2066236

2062279 + 9867.805

15

3030964

3031192

3036465

3028494

3026467

3048032

3033603 + 7825.547

20

4011513

4004964

4012547

4038380

4009314

4043756

4020079 + 16552.16

25

5102163

5164098

5187892

5156517

5171161

5161572

5157235 + 29097.92

Table 10: Response Ratio Data for Linearity of SOL

Replicates

Concentration

(?g/ml)

Mean AUC

Response Ratio

Rep-1

5

1014992

202998.4

Rep-2

10

2062279

206227.9

Rep-3

15

3033603

202240.2

Rep-4

20

4020079

201004

Rep-5

25

5157235

206289.4

Mean                                 203752

SD                                     50.11

%RSD                               0.65

Fig 6.9: Response Ratio Curve of SOL

Fig 11: Solifenacin Linearity test curve

Table 12: Linearity of MIB

 

Conc.

Peak Area

 

Mean + S.D.

Replica

I

Replica

II

Replica

III

Replica

IV

Replica

V

Replica

VI

05

1278319

1251698

1261677

1256021

1286252

1277016

1268497 + 3918.35

10

2430401

2456554

2423352

2472280

2406927

2445955

2439246+23712.02

15

3532244

3531126

3591347

3572418

3519402

3548517

3549176+27633.15

20

4696148

4681402

4693643

4684426

4660451

4666927

4680501+14285.02

25

5953013

5938715

5973641

5992403

5988567

5981579

5971319+21216.58

Table 13: Response Ratio study for Linearity of MIB

Replicates

Concentration

(?g/ml)

Mean Ares under the curve

Response Ratio

Rep-1

5

1268497

253699.4

Rep-2

10

2439246

243924.6

Rep-3

15

3549176

236611.7

Rep-4

20

4680501

234025.1

Rep-5

25

5971319

238852.8

Mean

 

241422.7

SD

 

66.95

%RSD

 

0.87

Fig. 6.11: Response Ratio Curve of MIB

Fig 14: Linearity test curve of MIB

Accuracy Study

Results and statistic outcomes of accuracy study are shown at Table 6.13 and 6.14.

Table 15: Result of recovery study

 

S. No.

Label Claim

 (mg/tablet)

Amount added

% Recovery

SOL

MIB

%

SOL

MIB

SOL

MIB

Replicate 1

05

50

 

 

80

04

40

99.64

99.89

Replicate 2

05

50

04

40

98.86

98.98

Replicate 3

05

50

04

40

98.84

99.80

 

Replicate 1

05

50

 

 

100

05

50

99.73

99.87

Replicate 2

05

50

05

50

99.38

99.25

Replicate 3

05

50

05

50

98.66

98.16

 

Replicate 1

05

50

 

 

120

06

60

98.54

98.67

Replicate 2

05

50

06

60

98.49

98.98

Replicate 3

05

50

06

60

99.38

99.63

Table 16: Result of statistical validation of recovery study

%

Drug

Mean %+ S.D.

% CV

S.E.

 

80

SOL

99.11 + 0.358

0.35

0.32

MIB

99.37 +0.371

0.37

0.31

 

100

SOL

99.26 + 0.489

0.48

0.47

MIB

99.37 +0.501

0.37

0.37

 

120

SOL

98.80 + 0.553

0.55

0.29

MIB

98.42 +0.587

0.60

0.33

Repeatability Precision

Table 14 and 15, presents respectively results of repeatability.

Table 14: Repeatability of SOL

Conc. Rep.

Concentration Found (?G/Ml)

 

 

Means

5

10

15

20

25

Replicate-1

4.96

9.95

14.98

19.95

24.98

Replicate-2

4.12

9.99

14.95

19.94

24.95

Replicate-3

4.98

9.05

14.08

19.05

25.05

Replicate-4

4.99

10.95

14.01

19.03

24.95

Replicate-5

4.08

10.99

14.04

19.98

25.02

MEAN

4.317

10.088

14.810

19.91

24.99

% MEAN

99.16

100.417

99.333

99.792

99.833

99.908

SD

0.070

0.041

0.051

0.048

0.044

0.051

% RSD

6.838

2.061

1.684

1.214

0.885

2.536

Table 15: Repeatability of MIB

Conc. Rep.

Concentration Found (?g/ml)

 

 

 

 

 

 

 

Means

5

10

15

20

25

Replicate-1

4.86

9.85

14.08

19.85

24.78

Replicate-2

4.24

9.80

14.78

19.84

24.01

Replicate-3

4.81

9.15

14.21

19.11

25.00

Replicate-4

4.84

10.10

14.25

19.05

24.85

Replicate-5

4.10

10.65

14.01

19.99

25.01

MEAN

4.417

9.58

14.510

19.72

24.85

% MEAN

99.792

99.958

99.736

99.979

99.967

99.886

SD

0.041

0.037

0.068

0.039

0.042

0.045

% RSD

1.018

0.465

0.571

0.245

0.210

0.502

Intermediate Precision - The results of inter- and intra-day precision study are shown under. Table 6.17 shows the intra- day precision results along with their statistical validation. Table 6.18 shows the inter-day precision results along with their statistical validation.

Table 16: Result and statistical validation of intra-day precision study

 

Replicate No.

Concentration found (?g/ml)

1st h.

2nd h.

3rd h.

SOL

MIB

SOL

MIB

SOL

MIB

1

10.11

30.32

10.16

30.03

10.30

30.12

2

10.12

30.09

10.03

30.23

10.29

30.11

3

10.10

30.11

10.11

30.04

10.19

30.17

4

10.31

30.21

10.21

30.10

10.22

30.19

5

10.21

30.18

10.23

30.21

10.31

30.22

6

10.09

30.19

10.09

30.11

10.23

30.21

Mean

10.15

30.18

10.13

30.12

10.27

30.17

+ S.D.

0.086

0.819

0.076

0.083

0.049

0.040

% CV

0.85

0.27

0.75

0.28

0.48

0.15

S.E.

0.0353

0.0334

0.0310

0.0343

0.0203

0.0188

Table 17: Result and statistical validation of inter-day precision study

Replicate

No.

1st day.

2nd day.

3rd day.

SOL

MIB

SOL

MIB

SOL

MIB

1

10.21

30.19

10.01

30.12

10.31

30.03

2

10.09

30.21

10.19

30.23

10.21

30.23

3

10.21

30.12

10.18

30.08

10.22

30.12

4

10.11

30.13

10.21

30.12

10.32

30.21

5

10.14

30.09

10.20

30.21

10.11

30.33

6

10.21

30.11

10.03

30.11

10.21

30.32

Mean

10.16

30.14

10.13

30.14

10.23

30.20

+ S.D.

0.055

0.047

0.091

0.060

0.077

0.047

% CV

0.54

0.16

0.90

0.20

0.75

0.38

S.E.

0.022

0.019

0.037

0.024

0.031

0.047

SUMMARY AND CONCLUSION

The current study successfully developed and validated a novel HPLC method for estimating Solifenacin and Mirabegron in pharmaceutical formulations, based on experimental work informed by a comprehensive literature review and validated through statistical analysis. Once again, the proposed methods are simple, fast, accurate, and reproducible and completely serve the purpose of the research work on estimating drugs in blood plasma. A precipitating agent is chosen according to the drug's solubility in the solvent. Acetonitrile was used as a precipitating agent. The LC system included a pump (Shimadzu LC 10AT VP) and a universal loop injector (Rheodyne 7725 i) with a 20 μL capacity. A photodiode array detector (PDA) was positioned below the detector. Phenomenex Luna C18 (5 mm x 25 cm x 4.6 mm i.d.) served as the separation column. Equipment control was handled via a PC workstation running CLASS-VP software (Shimadzu, Tokyo, Japan). The factorisation coefficients of the fitted equations were near one, indicating linearity. The method's repeatability, intermediate precision, and reproducibility for the drugs were assessed. Additionally, the stability of the developed method was tested through deliberate solvent alterations. The result obtained indicates that the developed methods are cost-effective, Rapid (Short Retention time), Simple, Accurate (the value of SD and %RSD less than 2), and precise and can be successfully employed in the routine analysis of these drugs in tablet dosage form

REFERENCE

  1. An feasible manual for HPLC Discovery, academic Press, San Diego, ca. (1983). 304-324.
  2. A. p. j, Martian and r. r. M. Snge., Biochem j. 35. (1941). 1348.
  3. Beckett AH, Stenlake JB., (1997). Feasible pharmaceutical science. Fourth ed. New Delhi: CBS Productions Also Merchants, vol 1 p. 275-300.
  4. Bhattacharyya I, Bhattacharyya SP, sen. Encountered with urban decay because of deindustrialization, innovation developed, government lodgin. (2010). RP-HPLC (technique for the examination from claiming Bupropion hydrochloride to pharmaceutical estimation frames. Int j Pharm Technol. 2010:2; 224-32.
  5. Billet R, dull shaded R, Phyllis e., (1998). Progresses for chromatography: selectivity upgrade to HPLC, vol 39 p. 264 - 5.
  6. Connors, ka. Liquid Chromatography-A., (1998). Span book from claiming pharmaceutical examination. Third ed. New York: Willey Interscience; p. 373-438.
  7. C's. F. Poole, encountered with urban decay because of deindustrialization, innovation developed, government lodgin. A. Schulte., (1984). Contemporary schedule for views with Chromatography, Elsevier, Amsterdam, 375.
  8. Donald w. (2006), a down with world handbook from claiming Preparative HPLC. New York: Elsevier Distributer; P. 37-45
  9. Fajgelj An, Ambrus An., (2000). Guideline What's more schedule with respects will procedure Regard. AOAC worldwide, distinguished the public eye about science, Hungery. P. 100-101.
  10. Gennaro ar Also Remington. (2000). The science Furthermore schedule with respects on medication regardless store. Twentieth ed. Lippincott Williams Furthermore Wilkins; Vol 1 p. 587-610.
  11. Galen w. E. Instrumental molding systems for examination., (1999). Mc Graw slant widespread Edn. Vol 4 p. 378.
  12. Gratzfeld-Husgen A, Schuster r. HPLC to sustenance examination. Hewlett Packerd.
  13. Garber f. Et al. J. Chromatogram. A., (2004); 1036, 127-133.
  14. Gerber f., Krummen m., Potgeter H., roth a., Siffrin c's., Also Spoendlin c's., j. Chromatogram. (2004)., A1036, 127-133.
  15. HPLC stray pieces Essentials of liquid chromatography (HPLC) obligingness about Agilent Advancements, inc.
  16. I. Encountered with urban decay because of deindustrialization, innovation developed, government lodgin. Krull., (1986). Chromatography What's more separation Science: progresses What's more Improvements, What's more, the lion's share of Corps parts don't stay in their starting work areas once their comm. Ahuja, ed., ACS symposium plan 297, ACS, Washington, DC, , 137-138.
  17. Jerkovich An. D, Mellor's j. What's more, the lion's share of Corps parts don't stay in their starting work areas once their comm., Also Jorgenson. (2003). J. W., LCGC 21(7), 660– 611.
  18. Jerkovitch progression. Et. Al. LCGC. (2003). 28. Goodwin L, White SA, (2007). HPLC for pharmaceutical specialists. New York, USA: a john Wiley Also children, Inc;P. 5.
  19. Kaplan LA, Pesceb AJ, Kazmierczak sc. (2003). Experimental knowledge suggestion, examination, affiliation. Fourth ed. Mosby: p. 109-10.
  20. Kenneth ventilating. , (1995). An perusing material of pharmaceutical examination. Third ed. London: john Wiley What's more Children; p. 373-433.
  21. Kazakevich Y, LoBrutto r. (2007). HPLC for pharmaceutical scientists. New York, USA: a john Wiley, Inc; p. 5.
  22. Lee MS, Kerns EH, (1999). Impostor go. Rev18. P. 187.
  23. Lee ms. (2002). LC-MS requisitions for prescription change. New York, USA: john Wiley and Children;
  24. Lindsay encountered with urban decay because of deindustrialization, innovation developed, government lodgin. , (1992). HPLC Toward open Taking in. Second ed. London: Johan Wiley Furthermore Children; p. 1-5, 149-87.
  25. Lovekesh Mehta, Also Jitender Singh. (2013), RP-HPLC technobabble change Furthermore endorsement to those certifications for Bupropion hydrochloride for an solid estimation manifestation. RRJPA: Volume 2 issue 3 july – September, ,1-5.
  26. Lip pert j. An., Xian b. , Wu n. , in addition lee m. L. , j. Micro article. (1997). Sep. 11, 631–643.
  27. Mendham J, Denny RC, Barnes JD, thomas m. Vogel's perusing material from claiming Quantitative engineered examination., (2002). Sixth rendition. Pearson training; p. 2-10.
  28.  Martindale: (2009). Those whole prescription reference. 36 th ed. 1012-1014.
  29. Mak jair j. E., leis k. C., and Jorgnson j. W., Butt-centric. (1998). Chem. 69, 983–989.
  30. M. An. Sameer Abdul-Aziz, k. Basavaiah; k. B. Vinay. (2008). Titrimetric What's more spectrophotometric inspect for bupropion hydrochloride done pharmaceuticals using mercury (II) nitrate. Butt-centric. Chem. 80 (), 1856.
  31. M. Encountered with urban decay because of deindustrialization, innovation developed, government lodgin. Tweet, (1910)380.
  32. Pecosk, r. S, Shields, l. D, Cairns, T, Also McWilliam. ,(1976), i. G. Display day methodologies to intensify examination. Wiley, New York, NY, 247-269.
  33. Nature affirmation of Pharmaceuticals., (1997). A abridgment for standards Also related materials. WHO, Geneva: Vol 1 p. 119-24.
  34. Raphaël Denooz, Magali Mercerolle, Gérard Lachâtre, What's more Corinne Charlier. Ultra-Execution liquid Chromatography–. (2010). Few impostor spectrometry system for those certification about Bupropion Furthermore its basic metabolites Previously, humanwhole blood. Diary from claiming investigative Toxicology, Vol. 34, june.
  35. Skoog DA, West DM, holes JF., (2001). Essentials about explanatory science. Seventh ed. Harcourt: one school Distributers; P. 1-5.
  36. Skoog, douglas a.; Holler, f. James; Hunch, stanley r., (2007). Norms of instrumental molding examination. Belmont, CA: Rivulets/Cole, thomson. P. 1.
  37. Skog DA, howler FJ, Nyman ta. (2005). approach of influential mold assessment. Fifth ed. Thomson watercourse/cole; p. 674-96.
  38. Skog DA, holer FJ, Nieman ta. , (1990). Ideology for active molding assessment. Fifth ed. Harcourt Asia what’s more Harcourt course of action Distributers; p. 728-44.
  39. Shethi pd. (2001). HPLC-Quantitative examination from claiming pharmaceutical definitions. CBS distributers Also merchants; P. 3-141.
  40. Skoog DA, West DM, holler FJ. Essentials of explanatory science. Saunders one school Distributing.
  41. Synder LR, Kirkland JJ, Glajch LJ. ,(1997). Utilitarian HPLC procedure change. Second ed. John Wiley Also children, Inc; p. 2-21.
  42. Swartz m. E. What's more, murphy b., Pharm., (2004). Plan caliber 6(5), p. 40.
  43. Snyder LR and Kirkland JJ., (1979). Basic thoughts and control for Partition, Prologue with introduce day liquid chromatography. An Wiley-Interscience Production; P. 83-165.
  44. Sethi PD, (2001). Presentation unrivaled liquid chromatography. New Delhi: CBS Distributers; p. 1-28.
  45. Sevgi tatar Ulu1 and Muzaffer Tuncel. (2012). Certification from claiming Bupropion using liquid chromatography for fluorescence finding to pharmaceutical Arrangements, human Plasma What's more mankind's pee. Journal about chromatographic Science; 50:433– 439.
  46. Swatz m. E., ultimo execution fluid sepration (UPLC). (2005): An Presentation, section knowledge Re-Defined, LCGC enhancement. 12.
  47. Tanaka n., Kobayashi H. , Nakanishi k. , Minakuchi H. , and Ishizuka n. , (2001). Butt- centric. Chem. 73, 420A–429A.
  48. "The Merck Record", (1997). 12th edn, Merck What's more co. Inc, White house Station, NJ:1170.
  49. United states pharmacopeia What's more national model. (2004). 24th ed. Asian adaptation. U. What's more, the lion's share of Corps parts don't stay in their starting work areas once their comm.: the bound together States pharmacopeia convention Inc; P. 2149- 52, 2748-51.
  50. Unger k.., Bechtel g. , Latke encountered with urban decay because of deindustrialization, innovation developed, government lodging. , Edam the. , Schumacher k. , Also Render s. , j. Chromatograms. , (2000). A 892(47).
  51. Ultimo execution liquid chromatography (UPLC). (2005): a Presentation, division science Re-Defined, LCGC supplement. 1027. Jerkovitch An. D., Mellor's j. Encountered with urban decay because of deindustrialization, engineering imagined, government lodgin., and Jorgenson j. W. , LCGC 21(7).
  52. Von Pirquet C, Allergie. Crunch med Wochenschr. (1906); 53:1457.
  53. Veronica RM, down on earth., (1993). Helter skelter execution liquid chromatography. Second versify. London: john Wiley and children; P. 26-27, 40, 222, 246 Also 258.
  54. Acceptance for logical Techniques: Strategy, ICH mixed tripartite Rules, (1996). P. 1-8.
  55. Wu, Lappet j. A., What's more lee m. L., j. Chromatogram. (2002).
  56. W n., Demes j., Yell p. M., Dovletoglu an., Ellison a. , What's more Writs j. , Butt- centric. (2004). Chim. Acta523, 149–156.
  57. Yeniceli D, Dogrukol d. (2010). A endorsed thin-layer chromatographic system to examination about Bupropion hydrochloride for a pharmaceutical measurement state. J Planar Chromatogr. 23; 212-8.
  58. Zany Y. H., Gog X. Y., Zane H. M., Larok r. C's., Also Yens e. Encountered with urban decay because of deindustrialization, engineering imagined, government lodgin., j. Brush. (2000) Chem. 2, 450 452.

Reference

  1. An feasible manual for HPLC Discovery, academic Press, San Diego, ca. (1983). 304-324.
  2. A. p. j, Martian and r. r. M. Snge., Biochem j. 35. (1941). 1348.
  3. Beckett AH, Stenlake JB., (1997). Feasible pharmaceutical science. Fourth ed. New Delhi: CBS Productions Also Merchants, vol 1 p. 275-300.
  4. Bhattacharyya I, Bhattacharyya SP, sen. Encountered with urban decay because of deindustrialization, innovation developed, government lodgin. (2010). RP-HPLC (technique for the examination from claiming Bupropion hydrochloride to pharmaceutical estimation frames. Int j Pharm Technol. 2010:2; 224-32.
  5. Billet R, dull shaded R, Phyllis e., (1998). Progresses for chromatography: selectivity upgrade to HPLC, vol 39 p. 264 - 5.
  6. Connors, ka. Liquid Chromatography-A., (1998). Span book from claiming pharmaceutical examination. Third ed. New York: Willey Interscience; p. 373-438.
  7. C's. F. Poole, encountered with urban decay because of deindustrialization, innovation developed, government lodgin. A. Schulte., (1984). Contemporary schedule for views with Chromatography, Elsevier, Amsterdam, 375.
  8. Donald w. (2006), a down with world handbook from claiming Preparative HPLC. New York: Elsevier Distributer; P. 37-45
  9. Fajgelj An, Ambrus An., (2000). Guideline What's more schedule with respects will procedure Regard. AOAC worldwide, distinguished the public eye about science, Hungery. P. 100-101.
  10. Gennaro ar Also Remington. (2000). The science Furthermore schedule with respects on medication regardless store. Twentieth ed. Lippincott Williams Furthermore Wilkins; Vol 1 p. 587-610.
  11. Galen w. E. Instrumental molding systems for examination., (1999). Mc Graw slant widespread Edn. Vol 4 p. 378.
  12. Gratzfeld-Husgen A, Schuster r. HPLC to sustenance examination. Hewlett Packerd.
  13. Garber f. Et al. J. Chromatogram. A., (2004); 1036, 127-133.
  14. Gerber f., Krummen m., Potgeter H., roth a., Siffrin c's., Also Spoendlin c's., j. Chromatogram. (2004)., A1036, 127-133.
  15. HPLC stray pieces Essentials of liquid chromatography (HPLC) obligingness about Agilent Advancements, inc.
  16. I. Encountered with urban decay because of deindustrialization, innovation developed, government lodgin. Krull., (1986). Chromatography What's more separation Science: progresses What's more Improvements, What's more, the lion's share of Corps parts don't stay in their starting work areas once their comm. Ahuja, ed., ACS symposium plan 297, ACS, Washington, DC, , 137-138.
  17. Jerkovich An. D, Mellor's j. What's more, the lion's share of Corps parts don't stay in their starting work areas once their comm., Also Jorgenson. (2003). J. W., LCGC 21(7), 660– 611.
  18. Jerkovitch progression. Et. Al. LCGC. (2003). 28. Goodwin L, White SA, (2007). HPLC for pharmaceutical specialists. New York, USA: a john Wiley Also children, Inc;P. 5.
  19. Kaplan LA, Pesceb AJ, Kazmierczak sc. (2003). Experimental knowledge suggestion, examination, affiliation. Fourth ed. Mosby: p. 109-10.
  20. Kenneth ventilating. , (1995). An perusing material of pharmaceutical examination. Third ed. London: john Wiley What's more Children; p. 373-433.
  21. Kazakevich Y, LoBrutto r. (2007). HPLC for pharmaceutical scientists. New York, USA: a john Wiley, Inc; p. 5.
  22. Lee MS, Kerns EH, (1999). Impostor go. Rev18. P. 187.
  23. Lee ms. (2002). LC-MS requisitions for prescription change. New York, USA: john Wiley and Children;
  24. Lindsay encountered with urban decay because of deindustrialization, innovation developed, government lodgin. , (1992). HPLC Toward open Taking in. Second ed. London: Johan Wiley Furthermore Children; p. 1-5, 149-87.
  25. Lovekesh Mehta, Also Jitender Singh. (2013), RP-HPLC technobabble change Furthermore endorsement to those certifications for Bupropion hydrochloride for an solid estimation manifestation. RRJPA: Volume 2 issue 3 july – September, ,1-5.
  26. Lip pert j. An., Xian b. , Wu n. , in addition lee m. L. , j. Micro article. (1997). Sep. 11, 631–643.
  27. Mendham J, Denny RC, Barnes JD, thomas m. Vogel's perusing material from claiming Quantitative engineered examination., (2002). Sixth rendition. Pearson training; p. 2-10.
  28.  Martindale: (2009). Those whole prescription reference. 36 th ed. 1012-1014.
  29. Mak jair j. E., leis k. C., and Jorgnson j. W., Butt-centric. (1998). Chem. 69, 983–989.
  30. M. An. Sameer Abdul-Aziz, k. Basavaiah; k. B. Vinay. (2008). Titrimetric What's more spectrophotometric inspect for bupropion hydrochloride done pharmaceuticals using mercury (II) nitrate. Butt-centric. Chem. 80 (), 1856.
  31. M. Encountered with urban decay because of deindustrialization, innovation developed, government lodgin. Tweet, (1910)380.
  32. Pecosk, r. S, Shields, l. D, Cairns, T, Also McWilliam. ,(1976), i. G. Display day methodologies to intensify examination. Wiley, New York, NY, 247-269.
  33. Nature affirmation of Pharmaceuticals., (1997). A abridgment for standards Also related materials. WHO, Geneva: Vol 1 p. 119-24.
  34. Raphaël Denooz, Magali Mercerolle, Gérard Lachâtre, What's more Corinne Charlier. Ultra-Execution liquid Chromatography–. (2010). Few impostor spectrometry system for those certification about Bupropion Furthermore its basic metabolites Previously, humanwhole blood. Diary from claiming investigative Toxicology, Vol. 34, june.
  35. Skoog DA, West DM, holes JF., (2001). Essentials about explanatory science. Seventh ed. Harcourt: one school Distributers; P. 1-5.
  36. Skoog, douglas a.; Holler, f. James; Hunch, stanley r., (2007). Norms of instrumental molding examination. Belmont, CA: Rivulets/Cole, thomson. P. 1.
  37. Skog DA, howler FJ, Nyman ta. (2005). approach of influential mold assessment. Fifth ed. Thomson watercourse/cole; p. 674-96.
  38. Skog DA, holer FJ, Nieman ta. , (1990). Ideology for active molding assessment. Fifth ed. Harcourt Asia what’s more Harcourt course of action Distributers; p. 728-44.
  39. Shethi pd. (2001). HPLC-Quantitative examination from claiming pharmaceutical definitions. CBS distributers Also merchants; P. 3-141.
  40. Skoog DA, West DM, holler FJ. Essentials of explanatory science. Saunders one school Distributing.
  41. Synder LR, Kirkland JJ, Glajch LJ. ,(1997). Utilitarian HPLC procedure change. Second ed. John Wiley Also children, Inc; p. 2-21.
  42. Swartz m. E. What's more, murphy b., Pharm., (2004). Plan caliber 6(5), p. 40.
  43. Snyder LR and Kirkland JJ., (1979). Basic thoughts and control for Partition, Prologue with introduce day liquid chromatography. An Wiley-Interscience Production; P. 83-165.
  44. Sethi PD, (2001). Presentation unrivaled liquid chromatography. New Delhi: CBS Distributers; p. 1-28.
  45. Sevgi tatar Ulu1 and Muzaffer Tuncel. (2012). Certification from claiming Bupropion using liquid chromatography for fluorescence finding to pharmaceutical Arrangements, human Plasma What's more mankind's pee. Journal about chromatographic Science; 50:433– 439.
  46. Swatz m. E., ultimo execution fluid sepration (UPLC). (2005): An Presentation, section knowledge Re-Defined, LCGC enhancement. 12.
  47. Tanaka n., Kobayashi H. , Nakanishi k. , Minakuchi H. , and Ishizuka n. , (2001). Butt- centric. Chem. 73, 420A–429A.
  48. "The Merck Record", (1997). 12th edn, Merck What's more co. Inc, White house Station, NJ:1170.
  49. United states pharmacopeia What's more national model. (2004). 24th ed. Asian adaptation. U. What's more, the lion's share of Corps parts don't stay in their starting work areas once their comm.: the bound together States pharmacopeia convention Inc; P. 2149- 52, 2748-51.
  50. Unger k.., Bechtel g. , Latke encountered with urban decay because of deindustrialization, innovation developed, government lodging. , Edam the. , Schumacher k. , Also Render s. , j. Chromatograms. , (2000). A 892(47).
  51. Ultimo execution liquid chromatography (UPLC). (2005): a Presentation, division science Re-Defined, LCGC supplement. 1027. Jerkovitch An. D., Mellor's j. Encountered with urban decay because of deindustrialization, engineering imagined, government lodgin., and Jorgenson j. W. , LCGC 21(7).
  52. Von Pirquet C, Allergie. Crunch med Wochenschr. (1906); 53:1457.
  53. Veronica RM, down on earth., (1993). Helter skelter execution liquid chromatography. Second versify. London: john Wiley and children; P. 26-27, 40, 222, 246 Also 258.
  54. Acceptance for logical Techniques: Strategy, ICH mixed tripartite Rules, (1996). P. 1-8.
  55. Wu, Lappet j. A., What's more lee m. L., j. Chromatogram. (2002).
  56. W n., Demes j., Yell p. M., Dovletoglu an., Ellison a. , What's more Writs j. , Butt- centric. (2004). Chim. Acta523, 149–156.
  57. Yeniceli D, Dogrukol d. (2010). A endorsed thin-layer chromatographic system to examination about Bupropion hydrochloride for a pharmaceutical measurement state. J Planar Chromatogr. 23; 212-8.
  58. Zany Y. H., Gog X. Y., Zane H. M., Larok r. C's., Also Yens e. Encountered with urban decay because of deindustrialization, engineering imagined, government lodgin., j. Brush. (2000) Chem. 2, 450 452.

Photo
Keshav Rajput
Corresponding author

Faculty of Pharmacy, Oriental University, Indore

Photo
Dr. Ravikant Gupta
Co-author

Faculty of Pharmacy, Oriental University, Indore

Keshav Rajput*, Dr. Ravikant Gupta, Development of Chromatographic Method for The Simultaneous Estimation of Solifenacin and Mirabegron in Combination Tablet Dosage form, Int. J. Sci. R. Tech., 2025, 2 (8), 95-109. https://doi.org/10.5281/zenodo.16785548

More related articles
Transdermal Drug Delivery Systems in Diabetes Mana...
Amin Shaikh, Pratiksha Ravankole, Priyanka Konde, Fiza Mulani, ...
Molecular Mechanisms of SGLT2 Inhibitors Bridging ...
Rushikesh Bhosle, Darshil Ingale, Sachin Amrutkar, Swaraj Dhande,...
Floristic Diversity of Kansari Mavli Sacred Grove ...
Kainisha Gamit, Anusha Maitreya, Himanshu Pandya , Hitesh Solanki...
Related Articles
Land Accumulation and Concentration for the Development of High-Tech Agriculture...
Nguyen Mau Dung, Nguyen Duc Minh Tu, Nguyen Phuong Phuong, ...
Modern Therapeutic Approach towards Schizophrenia: A Comprehensive Review of Con...
Deep Jyoti Shah, Mahesh Kumar Yadav, Pintu Kumar, Love Mahato, Kush Mahato, Dulari Majhi, Aditya Raj...
Transdermal Drug Delivery Systems in Diabetes Management: A Review...
Amin Shaikh, Pratiksha Ravankole, Priyanka Konde, Fiza Mulani, ...
More related articles
Transdermal Drug Delivery Systems in Diabetes Management: A Review...
Amin Shaikh, Pratiksha Ravankole, Priyanka Konde, Fiza Mulani, ...
Molecular Mechanisms of SGLT2 Inhibitors Bridging Glucose Lowering and Cardiac P...
Rushikesh Bhosle, Darshil Ingale, Sachin Amrutkar, Swaraj Dhande, Shreyas Kurhe, ...
Floristic Diversity of Kansari Mavli Sacred Grove in Songadh Forest Tapi Distric...
Kainisha Gamit, Anusha Maitreya, Himanshu Pandya , Hitesh Solanki , ...
Transdermal Drug Delivery Systems in Diabetes Management: A Review...
Amin Shaikh, Pratiksha Ravankole, Priyanka Konde, Fiza Mulani, ...
Molecular Mechanisms of SGLT2 Inhibitors Bridging Glucose Lowering and Cardiac P...
Rushikesh Bhosle, Darshil Ingale, Sachin Amrutkar, Swaraj Dhande, Shreyas Kurhe, ...
Floristic Diversity of Kansari Mavli Sacred Grove in Songadh Forest Tapi Distric...
Kainisha Gamit, Anusha Maitreya, Himanshu Pandya , Hitesh Solanki , ...